Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With t...Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.展开更多
In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient...In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given.展开更多
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable non...In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.展开更多
基金Supported by the Research Project of China Scholarship Council(No.201208155076)the Natural Science Foundation of Inner Mongolia(No.2013MS0118)the College Science Research Project of Inner Mongolia(No.NJZZ12182,No.NJZY13268)~~
基金supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734
文摘Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.
基金supported by National Natural Science Foundation of China under Grant No. 10672147
文摘In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given.
文摘In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.
基金Supported by the PhD Programs Foundation of Ministry of Education of China(20070128001)the Innovation Program of Shanghai Municipal Education Commission (09YZ239)the Research Foundation of Shanghai Institute of Technology (YJ2009-12)
文摘本文研究了Adomian分解方法在非线性分数阶微分方程求解中的应用. 利用Riemann-Liouville分数阶导数和Adomian分解方法, 将Duffing方程和Van der Pol方程联合在一个分数阶方程中,并获得了此方程的解析近似解.