Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CC...Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.展开更多
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditio...Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. The delivery of therapeutic compounds to the target site is a major challenge in the treatment of many diseases. Objective: This study aims to evaluate activated charcoal nanoparticles as a drug delivery system for anticancer agents (Sorafenib and Doxorubicin) in Hepatocellular Cancer Stem Cells. Method: The percent efficiency of entrapment (% EE) of the doxorubicin and sorafenib entrapped onto the activated charcoal was obtained by determining the free doxorubicin and sorafenib concentration in the supernatant-prepared solutions. Then the characterizations of nanoparticles were formed by determination of the particle size distribution, zeta potential, and polydispersity index (PDI). The anticancer activity of activated Charcoal, Doxorubicin-ACNP, sorafenib-ACNP, free doxorubicin, and free sorafenib solutions was measured based on cell viability percentage in HepG2 cell lines (ATCC-CCL 75). In vitro RBC’s toxicity of Doxorubicin/sorafenib loaded charcoal was estimated by hemolysis percentage. Results: The synthesized Doxorubicin-ACNP and Sorafenib-ACNP were evaluated and their physiochemical properties were also examined. Essentially, the percent Efficiency of Entrapment (EE %) was found to be 87.5% and 82.66% for Doxorubicin-ACNP and Sorafenib-ACNP, respectively. The loading capacity was 34.78% and 24.31% for Doxorubicin-ACNP and Sorafenib-ACNP. Using the Dynamic Light scattering [DLS] for the determination of the hydrodynamic size and surface zeta potential, a narrow sample size distribution was obtained of (18, 68, and 190 nm for charcoal, 105, 255, and 712 nm for doxorubicin, and 91, 295, and 955 nm for sorafenib), respectively. A surface charge of −13.2, −15.6 and −17 was obtained for charcoal, doxorubicin/charcoal, and sorafenib/charcoal nanoparticles. The cytotoxic activity of Doxorubicin-ACNP and Sorafenib-ACNP was evaluated in-vitro against HepG2 cell lines and it was observed that Drug loaded ACNP improved anticancer activity when compared to Doxorubicin or Sorafenib alone. Moreover, testing the toxicity potential of DOX-ACNP and Sorafenib-ACNP showed a significant reduction in the hemolysis of red blood cells when compared to Doxorubicin and Sorafenib alone. Conclusion: In conclusion, it is notable to state that this study is regarded as the first to investigate the use of Activated charcoal for the loading of Doxorubicin and Sorafenib for further use in the arena of hepatocellular carcinoma. Doxorubicin-ACNP and Sorafenib-ACNP showed noteworthy anticancer activity along with a reduced potential of RBCs hemolysis rendering it as an efficacious carrier with a low toxicity potential.展开更多
Doxorubicin is a commonly used chemotherapy drug for cancer treatment,although its effectiveness varies across different cancer types.p53 is a key factor involved in cell death induced by therapeutic agents,and it can...Doxorubicin is a commonly used chemotherapy drug for cancer treatment,although its effectiveness varies across different cancer types.p53 is a key factor involved in cell death induced by therapeutic agents,and it can be upregulated by doxorubicin,exhibiting a function of apoptosis.To further investigate the mechanism between p53 and doxorubicin,this study explored whether p53 plays a role in doxorubicin-induced cell death in the colorectal cancer line HCT116.The findings revealed that p53 was upregulated in HCT116 cells when treated with doxorubicin,and the knockdown of p53 decreased the sensitivity of HCT116 cells to doxorubicin.These results suggest that p53 plays an important role in doxorubicin-induced cell death in HCT116 cells,potentially contributing to more effective treatment approaches.展开更多
High-alkali treatment using sodium hydroxide(NaOH)injection can be a therapeutic approach for killing tumor cells.Alkalization can damage cellular structures and lead to cell death.Increased alkalinity can also enhanc...High-alkali treatment using sodium hydroxide(NaOH)injection can be a therapeutic approach for killing tumor cells.Alkalization can damage cellular structures and lead to cell death.Increased alkalinity can also enhance the efficacy of certain chemotherapeutic drugs such as doxorubicin(DOX).In this study,NaOH-loaded starch implants(NST implants)were used to induce hyperalkalization(increase pH)in the tumor environment,thereby inducing necrosis and enhancing the effects of DOX.NaOH is a strongly alkaline substance that can increase the pH when injected into a tumor.However,the administration of NaOH can have toxic side effects because it increases the pH of the entire body,not just at the tumor site.To overcome this problem,we developed an injectable NST implant,in which NaOH can be delivered directly into the tumor.This study showed that NST implants could be easily administered intratumorally in mice bearing 4T1 tumors and that most of the NaOH released from the NST implants was delivered to the tumors.Although some NaOH from NST implants can be systemically absorbed,it is neutralized by the body’s buffering effect,thereby reducing the risk of toxicity.This study also confirmed both in vitro and in vivo that DOX is more effective at killing 4T1 cells when alkalized.It has been shown that administration of DOX after injection of an NST implant can kill most tumors.Systemic absorption and side effects can be reduced using an NST implant to deliver NaOH to the tumor.In addition,alkalinization induced by NST implants not only exerts anticancer effects but can also enhance the effect of DOX in killing cancer cells.Therefore,the combination of NaOH-loaded starch implants and DOX treatment has the potential to be a novel therapy for tumors.展开更多
Objectives: A non-clinical study was performed to establish a LC-MS/MS method to determine the in vivo active components of doxorubicin hydrochloride liposome injection in the plasma of Sprague-Dawley rats. Methods: T...Objectives: A non-clinical study was performed to establish a LC-MS/MS method to determine the in vivo active components of doxorubicin hydrochloride liposome injection in the plasma of Sprague-Dawley rats. Methods: Ten male SD rats were administered tail vein with a single dose of 10 mg/kg, and the concentrations of doxorubicin hydrochloride in plasma, heart, liver, spleen, lung, and kidney were determined by liquid chromatography-tandem mass spectrometry, and the pharmacokinetic parameters were calculated. Results: The final concentration of doxorubicin hydrochloride ranged from 500 ng/mL to 250,000 ng/mL, and the lower limit of quantification was 500 ng/mL;the main pharmacokinetic parameters: T<sub>1/2</sub> was (19.282 ± 10.305) h, C<sub>max</sub> was (118514.828 ± 26155.134) ng/mL, AUC<sub>0-24</sub> and AUC<sub>0-∞</sub> were (1216659.205 ± 192706.268) ng/mL⋅h and (2082244.523 ± 860139.487) ng/mL⋅h, MRT<sub>0-24</sub> and MRT<sub>0-∞</sub> were (9.237 ± 0.423) h and (26.52 ± 14.015) h, respectively, and clearance (CL) was (0.005 ± 0.002) mL/h⋅ng. Conclusions: The method is simple, rapid, and sensitive, which can be used for the determination of doxorubicin hydrochloride concentration in the plasma of SD rats and pharmacokinetic non-clinical studies.展开更多
Aims:To determine the safety and efficacy of microwave ablation(MWA)and transarterial chemoembolization(TACE)with doxorubicin hydrochloride liposome(DHL)in patients with primary liver cancer(PLC)and metastatic liver c...Aims:To determine the safety and efficacy of microwave ablation(MWA)and transarterial chemoembolization(TACE)with doxorubicin hydrochloride liposome(DHL)in patients with primary liver cancer(PLC)and metastatic liver cancer(MLC).Materials and methods:The medical records of patients with primary or metastatic liver cancer who underwent MWA combined with TACE containing DHL from March 2019 to March 2022 were collected and analyzed.Treatment-related adverse events(AEs)were recorded.Local tumor response was evaluated according to the modified RECIST criteria.Local tumor progression-free survival(LTPFS)and overall survival(OS)were calculated using the Kaplan-Meier method.Results:Altogether,96 patients with liver cancer were included(PLC,n=45;MLC,n=51).Forty(41.7%)patients experienced AEs during treatment,and eight(8.3%)patients developed grade 3 AEs.Compared to before treatment,the serum total bilirubin level and neutrophil to lymphocyte ratio significantly increased after treatment.The median LTPFS was 14.5 months in patients with PLC and 10.7 months in patients with MLC.The median OS was not reached in patients with PLC or MLC.The 1-month and 3-month disease control rates reached more than 80%in both groups.Conclusion:MWA combined with TACE with DHL may be a safe and effective method for the treatment of liver cancer.展开更多
Doxorubicin is an anthracycline antibiotic.As a broad-spectrum antitumor drug,it is widely used in clinic.However,doxorubicin is dose-dependent and shows obvious cardiotoxicity,which limits its clinical application.At...Doxorubicin is an anthracycline antibiotic.As a broad-spectrum antitumor drug,it is widely used in clinic.However,doxorubicin is dose-dependent and shows obvious cardiotoxicity,which limits its clinical application.At present,the mechanism of doxorubicin induced cardiotoxicity has not been fully clarified.Reducing cardiotoxicity and improving the scope of clinical application have become the focus of research in recent years.This paper reviews the mechanism of doxorubicin cardiotoxicity and the prevention and treatment of doxorubicin cardiotoxicity with traditional Chinese medicine,in order to provide reference for the combined application of doxorubicin.展开更多
基金supported by the Natural Science Foundation of Hainan Province High-level Talent Project(grant number 820RC644)Innovative Research Projects for Postgraduate Students at Hainan Medical University(grant number HYYS2022B08).
文摘Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.
文摘Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. The delivery of therapeutic compounds to the target site is a major challenge in the treatment of many diseases. Objective: This study aims to evaluate activated charcoal nanoparticles as a drug delivery system for anticancer agents (Sorafenib and Doxorubicin) in Hepatocellular Cancer Stem Cells. Method: The percent efficiency of entrapment (% EE) of the doxorubicin and sorafenib entrapped onto the activated charcoal was obtained by determining the free doxorubicin and sorafenib concentration in the supernatant-prepared solutions. Then the characterizations of nanoparticles were formed by determination of the particle size distribution, zeta potential, and polydispersity index (PDI). The anticancer activity of activated Charcoal, Doxorubicin-ACNP, sorafenib-ACNP, free doxorubicin, and free sorafenib solutions was measured based on cell viability percentage in HepG2 cell lines (ATCC-CCL 75). In vitro RBC’s toxicity of Doxorubicin/sorafenib loaded charcoal was estimated by hemolysis percentage. Results: The synthesized Doxorubicin-ACNP and Sorafenib-ACNP were evaluated and their physiochemical properties were also examined. Essentially, the percent Efficiency of Entrapment (EE %) was found to be 87.5% and 82.66% for Doxorubicin-ACNP and Sorafenib-ACNP, respectively. The loading capacity was 34.78% and 24.31% for Doxorubicin-ACNP and Sorafenib-ACNP. Using the Dynamic Light scattering [DLS] for the determination of the hydrodynamic size and surface zeta potential, a narrow sample size distribution was obtained of (18, 68, and 190 nm for charcoal, 105, 255, and 712 nm for doxorubicin, and 91, 295, and 955 nm for sorafenib), respectively. A surface charge of −13.2, −15.6 and −17 was obtained for charcoal, doxorubicin/charcoal, and sorafenib/charcoal nanoparticles. The cytotoxic activity of Doxorubicin-ACNP and Sorafenib-ACNP was evaluated in-vitro against HepG2 cell lines and it was observed that Drug loaded ACNP improved anticancer activity when compared to Doxorubicin or Sorafenib alone. Moreover, testing the toxicity potential of DOX-ACNP and Sorafenib-ACNP showed a significant reduction in the hemolysis of red blood cells when compared to Doxorubicin and Sorafenib alone. Conclusion: In conclusion, it is notable to state that this study is regarded as the first to investigate the use of Activated charcoal for the loading of Doxorubicin and Sorafenib for further use in the arena of hepatocellular carcinoma. Doxorubicin-ACNP and Sorafenib-ACNP showed noteworthy anticancer activity along with a reduced potential of RBCs hemolysis rendering it as an efficacious carrier with a low toxicity potential.
文摘Doxorubicin is a commonly used chemotherapy drug for cancer treatment,although its effectiveness varies across different cancer types.p53 is a key factor involved in cell death induced by therapeutic agents,and it can be upregulated by doxorubicin,exhibiting a function of apoptosis.To further investigate the mechanism between p53 and doxorubicin,this study explored whether p53 plays a role in doxorubicin-induced cell death in the colorectal cancer line HCT116.The findings revealed that p53 was upregulated in HCT116 cells when treated with doxorubicin,and the knockdown of p53 decreased the sensitivity of HCT116 cells to doxorubicin.These results suggest that p53 plays an important role in doxorubicin-induced cell death in HCT116 cells,potentially contributing to more effective treatment approaches.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1F1A1047799)supported by the Dongguk University Research Fund of 2021
文摘High-alkali treatment using sodium hydroxide(NaOH)injection can be a therapeutic approach for killing tumor cells.Alkalization can damage cellular structures and lead to cell death.Increased alkalinity can also enhance the efficacy of certain chemotherapeutic drugs such as doxorubicin(DOX).In this study,NaOH-loaded starch implants(NST implants)were used to induce hyperalkalization(increase pH)in the tumor environment,thereby inducing necrosis and enhancing the effects of DOX.NaOH is a strongly alkaline substance that can increase the pH when injected into a tumor.However,the administration of NaOH can have toxic side effects because it increases the pH of the entire body,not just at the tumor site.To overcome this problem,we developed an injectable NST implant,in which NaOH can be delivered directly into the tumor.This study showed that NST implants could be easily administered intratumorally in mice bearing 4T1 tumors and that most of the NaOH released from the NST implants was delivered to the tumors.Although some NaOH from NST implants can be systemically absorbed,it is neutralized by the body’s buffering effect,thereby reducing the risk of toxicity.This study also confirmed both in vitro and in vivo that DOX is more effective at killing 4T1 cells when alkalized.It has been shown that administration of DOX after injection of an NST implant can kill most tumors.Systemic absorption and side effects can be reduced using an NST implant to deliver NaOH to the tumor.In addition,alkalinization induced by NST implants not only exerts anticancer effects but can also enhance the effect of DOX in killing cancer cells.Therefore,the combination of NaOH-loaded starch implants and DOX treatment has the potential to be a novel therapy for tumors.
文摘Objectives: A non-clinical study was performed to establish a LC-MS/MS method to determine the in vivo active components of doxorubicin hydrochloride liposome injection in the plasma of Sprague-Dawley rats. Methods: Ten male SD rats were administered tail vein with a single dose of 10 mg/kg, and the concentrations of doxorubicin hydrochloride in plasma, heart, liver, spleen, lung, and kidney were determined by liquid chromatography-tandem mass spectrometry, and the pharmacokinetic parameters were calculated. Results: The final concentration of doxorubicin hydrochloride ranged from 500 ng/mL to 250,000 ng/mL, and the lower limit of quantification was 500 ng/mL;the main pharmacokinetic parameters: T<sub>1/2</sub> was (19.282 ± 10.305) h, C<sub>max</sub> was (118514.828 ± 26155.134) ng/mL, AUC<sub>0-24</sub> and AUC<sub>0-∞</sub> were (1216659.205 ± 192706.268) ng/mL⋅h and (2082244.523 ± 860139.487) ng/mL⋅h, MRT<sub>0-24</sub> and MRT<sub>0-∞</sub> were (9.237 ± 0.423) h and (26.52 ± 14.015) h, respectively, and clearance (CL) was (0.005 ± 0.002) mL/h⋅ng. Conclusions: The method is simple, rapid, and sensitive, which can be used for the determination of doxorubicin hydrochloride concentration in the plasma of SD rats and pharmacokinetic non-clinical studies.
文摘Aims:To determine the safety and efficacy of microwave ablation(MWA)and transarterial chemoembolization(TACE)with doxorubicin hydrochloride liposome(DHL)in patients with primary liver cancer(PLC)and metastatic liver cancer(MLC).Materials and methods:The medical records of patients with primary or metastatic liver cancer who underwent MWA combined with TACE containing DHL from March 2019 to March 2022 were collected and analyzed.Treatment-related adverse events(AEs)were recorded.Local tumor response was evaluated according to the modified RECIST criteria.Local tumor progression-free survival(LTPFS)and overall survival(OS)were calculated using the Kaplan-Meier method.Results:Altogether,96 patients with liver cancer were included(PLC,n=45;MLC,n=51).Forty(41.7%)patients experienced AEs during treatment,and eight(8.3%)patients developed grade 3 AEs.Compared to before treatment,the serum total bilirubin level and neutrophil to lymphocyte ratio significantly increased after treatment.The median LTPFS was 14.5 months in patients with PLC and 10.7 months in patients with MLC.The median OS was not reached in patients with PLC or MLC.The 1-month and 3-month disease control rates reached more than 80%in both groups.Conclusion:MWA combined with TACE with DHL may be a safe and effective method for the treatment of liver cancer.
基金National Natural Science Foundation of China(No.82074419)"Double First-Class"Key Research Project of Gansu Provincial Education Department(No.GSSYLxM-05)。
文摘Doxorubicin is an anthracycline antibiotic.As a broad-spectrum antitumor drug,it is widely used in clinic.However,doxorubicin is dose-dependent and shows obvious cardiotoxicity,which limits its clinical application.At present,the mechanism of doxorubicin induced cardiotoxicity has not been fully clarified.Reducing cardiotoxicity and improving the scope of clinical application have become the focus of research in recent years.This paper reviews the mechanism of doxorubicin cardiotoxicity and the prevention and treatment of doxorubicin cardiotoxicity with traditional Chinese medicine,in order to provide reference for the combined application of doxorubicin.