Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestra...Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestration in coals. Anthracite samples were collected from the Qinshui Basin and subjected to mercury intrusion porosimetry, low-pressure CO_(2) adsorption, and high-pressure CH_(4)/CO_(2) isothermal adsorption experiments. The average number of layers of adsorbed molecules(ANLAM) and the CH_(4)/CO_(2) absolute adsorption amounts and their ratio at experimental temperatures and pressures were calculated. Based on a comparison of the density of supercritical CO_(2) and supercritical CH_(4), it is proposed that the higher adsorption capacity of supercritical CO_(2) over supercritical CH_(4) is the result of their density differences at the same temperature. Lastly, the optimal depth for CO_(2)-ECBM in the Qinshui Basin is recommended. The results show that:(1) the adsorption capacity and the ANLAM of CO_(2) are about twice that of CH_(4) on SH-3 anthracite. The effect of pressure on the CO_(2)/CH_(4) absolute adsorption ratio decreases with the increase of pressure and tends to be consistent.(2) A parameter(the density ratio between gas free and adsorbed phase(DRFA)) is proposed to assess the absolute adsorption amount according to the supercritical CO_(2)/CH_(4) attributes. The DRFA of CO_(2) and CH_(4) both show a highly positive correlation with their absolute adsorption amounts, and therefore, the higher DRFA of CO_(2) is the significant cause of its higher adsorption capacity over CH_(4) under the same temperature and pressure.(3) CO_(2) adsorption on coal shows micropore filling with multilayer adsorption in the macro-mesopore, while methane exhibits monolayer surface coverage.(4) Based on the ideal CO_(2)/CH_(4) competitive adsorption ratio, CO_(2) storage capacity, and permeability variation with depth, it is recommended that the optimal depth for CO_(2)-ECBM in the Qinshui Basin ranges from 1000 m to 1500 m.展开更多
基金the financial support provided by National Natural Science Foundation of China (Nos. 42102207 and 42141012)Major Project supported by Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, CUMT (2020ZDZZ01C)+1 种基金the Fundamental Research Funds for the Central Universities (2021YCPY0106)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)。
文摘Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestration in coals. Anthracite samples were collected from the Qinshui Basin and subjected to mercury intrusion porosimetry, low-pressure CO_(2) adsorption, and high-pressure CH_(4)/CO_(2) isothermal adsorption experiments. The average number of layers of adsorbed molecules(ANLAM) and the CH_(4)/CO_(2) absolute adsorption amounts and their ratio at experimental temperatures and pressures were calculated. Based on a comparison of the density of supercritical CO_(2) and supercritical CH_(4), it is proposed that the higher adsorption capacity of supercritical CO_(2) over supercritical CH_(4) is the result of their density differences at the same temperature. Lastly, the optimal depth for CO_(2)-ECBM in the Qinshui Basin is recommended. The results show that:(1) the adsorption capacity and the ANLAM of CO_(2) are about twice that of CH_(4) on SH-3 anthracite. The effect of pressure on the CO_(2)/CH_(4) absolute adsorption ratio decreases with the increase of pressure and tends to be consistent.(2) A parameter(the density ratio between gas free and adsorbed phase(DRFA)) is proposed to assess the absolute adsorption amount according to the supercritical CO_(2)/CH_(4) attributes. The DRFA of CO_(2) and CH_(4) both show a highly positive correlation with their absolute adsorption amounts, and therefore, the higher DRFA of CO_(2) is the significant cause of its higher adsorption capacity over CH_(4) under the same temperature and pressure.(3) CO_(2) adsorption on coal shows micropore filling with multilayer adsorption in the macro-mesopore, while methane exhibits monolayer surface coverage.(4) Based on the ideal CO_(2)/CH_(4) competitive adsorption ratio, CO_(2) storage capacity, and permeability variation with depth, it is recommended that the optimal depth for CO_(2)-ECBM in the Qinshui Basin ranges from 1000 m to 1500 m.