期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The effect of the density difference between supercritical CO_(2) and supercritical CH_(4) on their adsorption capacities: An experimental study on anthracite in the Qinshui Basin
1
作者 Si-Jie Han Shu-Xun Sang +3 位作者 Piao-Piao Duan Jin-Chao Zhang Wen-Xin Xiang Ang Xu 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1516-1526,共11页
Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestra... Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestration in coals. Anthracite samples were collected from the Qinshui Basin and subjected to mercury intrusion porosimetry, low-pressure CO_(2) adsorption, and high-pressure CH_(4)/CO_(2) isothermal adsorption experiments. The average number of layers of adsorbed molecules(ANLAM) and the CH_(4)/CO_(2) absolute adsorption amounts and their ratio at experimental temperatures and pressures were calculated. Based on a comparison of the density of supercritical CO_(2) and supercritical CH_(4), it is proposed that the higher adsorption capacity of supercritical CO_(2) over supercritical CH_(4) is the result of their density differences at the same temperature. Lastly, the optimal depth for CO_(2)-ECBM in the Qinshui Basin is recommended. The results show that:(1) the adsorption capacity and the ANLAM of CO_(2) are about twice that of CH_(4) on SH-3 anthracite. The effect of pressure on the CO_(2)/CH_(4) absolute adsorption ratio decreases with the increase of pressure and tends to be consistent.(2) A parameter(the density ratio between gas free and adsorbed phase(DRFA)) is proposed to assess the absolute adsorption amount according to the supercritical CO_(2)/CH_(4) attributes. The DRFA of CO_(2) and CH_(4) both show a highly positive correlation with their absolute adsorption amounts, and therefore, the higher DRFA of CO_(2) is the significant cause of its higher adsorption capacity over CH_(4) under the same temperature and pressure.(3) CO_(2) adsorption on coal shows micropore filling with multilayer adsorption in the macro-mesopore, while methane exhibits monolayer surface coverage.(4) Based on the ideal CO_(2)/CH_(4) competitive adsorption ratio, CO_(2) storage capacity, and permeability variation with depth, it is recommended that the optimal depth for CO_(2)-ECBM in the Qinshui Basin ranges from 1000 m to 1500 m. 展开更多
关键词 CO_(2)geological storage Competitive adsorption Deep unmineable coal Average number of layers of adsorbed molecules density ratio between free phase and adsorbed phase Micropore filling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部