The goal of the present research is to remove high percentage of cationic and anionic dyes such as,Neutral Red, Safranin O and Indigo Carmine from aqueous solutions by poly(NIPAAm/N,Ndiallylpyrrolidinium bromide/AA)...The goal of the present research is to remove high percentage of cationic and anionic dyes such as,Neutral Red, Safranin O and Indigo Carmine from aqueous solutions by poly(NIPAAm/N,Ndiallylpyrrolidinium bromide/AA) superabsorbent amphoteric nanohydrogels synthesized using the inverse microemulsion polymerization method. Effect of various parameters such as, treatment time,initial dye concentration, p H and adsorbent dose were investigated. Furthermore, kinetics and isotherms adsorption models were applied to determine the maximum adsorption and mechanism for adsorption,which shows that adsorption obeyed the pseudo-second order kinetics. From the results, removal of dyes within the nanohydrogel was found to be in the order: AB-74 〈 BR-2≤ BR-5.展开更多
基金Financial support for this work was provided by University Grants Commission,New Delhi(No.F.39-685/2010(SR))
文摘The goal of the present research is to remove high percentage of cationic and anionic dyes such as,Neutral Red, Safranin O and Indigo Carmine from aqueous solutions by poly(NIPAAm/N,Ndiallylpyrrolidinium bromide/AA) superabsorbent amphoteric nanohydrogels synthesized using the inverse microemulsion polymerization method. Effect of various parameters such as, treatment time,initial dye concentration, p H and adsorbent dose were investigated. Furthermore, kinetics and isotherms adsorption models were applied to determine the maximum adsorption and mechanism for adsorption,which shows that adsorption obeyed the pseudo-second order kinetics. From the results, removal of dyes within the nanohydrogel was found to be in the order: AB-74 〈 BR-2≤ BR-5.