Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ...Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+)diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−)and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1)at 0.05 A g^(−1)and superior stability(96.5%retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+)and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+)migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.展开更多
N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insi...N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.展开更多
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ...Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode.展开更多
Bimetallic clusters have aroused tremendous interest because the property changes like structure,size,and composition have occurred.Herein,a structural search of the global minimum for anionic LiMg_(n)^(-)(n=2-11) clu...Bimetallic clusters have aroused tremendous interest because the property changes like structure,size,and composition have occurred.Herein,a structural search of the global minimum for anionic LiMg_(n)^(-)(n=2-11) clusters is performed using an efficient crystal structure analysis by particle swarm optimization(CALYPSO) structural searching program with subsequent density functional theory(DFT) calculations.A great variety of low energetic isomers are converged,and the most stable ones are confirmed by comparing their total energy of each size.It is found that the LiMg_(n)^(-)clusters are structurally consistent with corresponding Mg clusters anions except for LiMg_(5)^(-)and LiMg_(7)^(-).In all the doped clusters,the Li atom prefers to occupy the convex position.Simulated photoelectron spectra(PES),Infrared(IR),and Raman spectra of LiMg_(n)^(-)could be used as an essential evidence for identifying cluster structures experimentally in the future.Stability study reveals that a tower-like structure of LiMg_(9)^(-)has prominent stability and can be identified as a magic number cluster.The reason might be that there are both closed-shell 1S^(2)1P^(6)1D^(10)2S^(2) electronic configurations and stronger Li-Mg bonds caused by sp hybridization in the LiMg_(9)^(-)cluster.展开更多
Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value ...Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value decomposition (SVD) to analyze the relationship betwe en neural nodes of the hidden layer and singular values, cumulative contribution ratio, index vector, and optimizes the structure of NRBFN. Finally, simulation and performance comparison show that the algorithm is feasible and effective.展开更多
Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function...Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation.展开更多
Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and ...Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.展开更多
Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thicknes...Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.展开更多
In order to minimize the self-heating effect of the classic SOI devices,SOI structures with Si3 N4 film as a buried insulator (SOSN) are successfully formed using epitaxial layer transfer technology for the first ti...In order to minimize the self-heating effect of the classic SOI devices,SOI structures with Si3 N4 film as a buried insulator (SOSN) are successfully formed using epitaxial layer transfer technology for the first time. The new SOI structures are investigated with high-resolution cross-sectional transmission electron microscopy and spreading resistance profile. Experiment results show that the buried Si3 N4 layer is amorphous and the new SOI material has good structural and electrical properties. The output current characteristics and temperature distribution are simulated and compared to those of standard SOI MOSFETs. Furthermore, the channel temperature and negative differential resistance are reduced during high-temperature operation, suggesting that SOSN can effectively mitigate the selfheating penalty. The new SOI device has been verified in two-dimensional device simulation and indicated that the new structures can reduce device self-heating and increase drain current of the SOI MOSFET.展开更多
The crystal structure of the title compound ((C 6H 5CONC 6H 4S) 2, M r =229) has been determined by X ray diffraction analysis. The crystal belongs to triclinic space group P 1 with cell parameters: a=...The crystal structure of the title compound ((C 6H 5CONC 6H 4S) 2, M r =229) has been determined by X ray diffraction analysis. The crystal belongs to triclinic space group P 1 with cell parameters: a=7.957(4), b=11.570(7), c=12 335(6), α=76.68(4), β=81.48(4), γ=87.26(4)°, V=1092.9 3, Z=2, D c =1 39g/cm 3, F(000)=476, μ (Mo Kα )=2.7mm -1 . The final R factor is 0.0373 for 3764 observed reflections. The result of X ray diffraction analysis indicates that all of these single bond lengths are obviously shorter than that of standard single bond. Those atoms might take part in a conjugate system. The electrons for sp 3 hybridized S(1) and S(2) move toward two sides and the densities of electronic cloud among them are reduced and can be easily broken. The obtained results can explain the reaction mechanism of the title compound.展开更多
The structure genes spike(S) ,nucleocapsid(N) ,membrane(M) ,small membrane(sM) of a porcine epidemic diarrhea virus(PEDV) strain DX isolated in Gansu province,North-west of China,were cloned,sequenced and compared wit...The structure genes spike(S) ,nucleocapsid(N) ,membrane(M) ,small membrane(sM) of a porcine epidemic diarrhea virus(PEDV) strain DX isolated in Gansu province,North-west of China,were cloned,sequenced and compared with published sequences of PEDV strains. The nucleotide sequences encoding the entire S,sM,M and N genes open reading frame(ORF) of DX were 4 152,231,681 and 1 326 bases long respectively. There were transcription regulatory sequences(TRSs) upstream of the initiator ATG of the S,N and M genes. The amino acids sequences of S,M and N contained 30,3 and 7 potential asparagine(N) -linked glycosylation sites. Homologous analysis and phylogenetic trees showed that DX had the closest relationship with strains LJB/06,JS-2004-2Z and CH/HLJH/06 that were also isolated from China and indicated the prevalence of some PEDV isolates in China were widespread since the JS-2004-2Z strain originated from the south of the China,and LJB/06 and CH/HLJH/06 were isolated from northeast China. The N gene was cloned using two primers which contained Nco I and BamH I restriction enzyme sites and subcloned into expression vector pET30a. The recombinant plasmid was then transformed into E.coli Rossta. SDS-PAGE showed there was a protein of about 55kDa as expected and Western blot indicated the N protein had biological activity.展开更多
Purpose: This paper aims to gain an insight into the disciplinary structure of nanoscience & nanotechnology (N&N): What is the disciplinary network of N&N like? Which disciplines are being integrated into N&N...Purpose: This paper aims to gain an insight into the disciplinary structure of nanoscience & nanotechnology (N&N): What is the disciplinary network of N&N like? Which disciplines are being integrated into N&N over time? For a specific discipline, how many other disciplines have direct or indirect connections with it? What are the distinct subgroups of N&N at different evolutionary stages? Such critical issues are to be addressed in this paper. Design/methodology/approach: We map the disciplinary network structure of N&N by employing the social network analysis tool, Netdraw, identifying which Web of Science Categories (WCs) mediate nbetweenness centrality in different stages of nano development. Cliques analysis embedded in the Ucinet program is applied to do the disciplinary cluster analysis in the study according to the path of "Network-Subgroup-Cliques," and a tree diagram is selected as the visualizing type. Findings: The disciplinary network structure reveals the relationships among different disciplines in the N&N developing process clearly, and it is easy for us to identify which disciplines are connected with the core "N&N" directly or indirectly. The tree diagram showing N&N related disciplines provides an interesting perspective on nano research and development (R&D) structure. Research limitations: The matrices used to draw the N&N disciplinary network are the original ones, and normalized matrix could be tried in future similar studies. Practical implications: Results in this paper can help us better understand the disciplinary structure of N&N, and the dynamic evolution of N&N related disciplines over time. The findings could benefit R&D decision making. It can support policy makers from government agencies engaging in science and technology (S&T) management or S&T strategy planners to formulate efficient decisions according to a perspective of converging sciences and technologies. Originality/value: The novelty of this study lies in mapping the disciplinary network structure of N&N clearly, identifying which WCs have a mediating effect in different developmental stages (especially analyzing clusters among disciplines related to N&N, revealing close or distant relationships among distinct areas pertinent to N&N).展开更多
Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, r...Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, relative molecular mass and structural characterization were determined by gas chromatography, high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy methods. EW was hybrid l/k/v-carrageenan (701/17k/13v-car- rabiose), EH was mainly t-carrageenan, and EA was mainly α-1,4-Glucan (88%) but mixed with small amount of t-carrageenan (12%). The relative molecular mass ofEW, EH and EA was 480, 580 and 510kDa, respectively. The anti-influenza A (H1N1) virus activity of these three polysaccharides was evaluated using the Madin-Darby canine kidney cells model. EW showed good anti-H1N1 virus activity, its ICso was 276.5 μg mL-1, and the inhibition rate to H1N1 virus was 52% when its concentration was 250 μgmL-1. The ICs0 of t-carrageenan EH was 366.4 μgmL1, whereas EA showed lower anti-H1N1 virus activity (IC50〉430μgmL-1). Available data obtained give positive evidence that the hybrid carrageenan EW from Eueheuma denticulatum can be used as potential anti-H1N1 virus inhibitor in future.展开更多
g-C3N4 is a hot visible light photocatalyst. However, the fast recombination of photogenerated electron- hole pairs leads to unsatisfactory photocatalytic efficiencies. In this study, Mg/O co-decorated amorphous carbo...g-C3N4 is a hot visible light photocatalyst. However, the fast recombination of photogenerated electron- hole pairs leads to unsatisfactory photocatalytic efficiencies. In this study, Mg/O co-decorated amorphous carbon nitride (labeled as MgO-CN) with a unique electronic structure was designed and prepared via a combined experimental and theoretical approach. The results showed that the MgO-CN exhibited an increased light absorption ability and promoted charge separation efficiency. The Mg and O co-decoration created a unique structure that could generate localized electrons around O atoms and enhance the reactant activation capacities via the C→O←Mg route. This could dramatically promote the O2 molecule activation on the catalyst surface to generate reactive species (?O2 –/?OH). The optimized MgO-CN exhibited a high photocatalytic activity for the degradation of tetracycline hydrochloride in water, which was five times higher than that of pristine g-C3N4. The present work could provide a new strategy for modifying the electronic structure of g-C3N4 and enhancing its performance for environmental applications.展开更多
The title compound N,N'-bis(5,5-dimethyl-2-phospha-2-thio-1,3-dioxan-2-yl) ethylene diamine (DPTDEDA, C12H26N2O4P2S2) was synthesized by the reaction of neopentyl glycol, phosphorus thio-chloride and 1,2-ethylene...The title compound N,N'-bis(5,5-dimethyl-2-phospha-2-thio-1,3-dioxan-2-yl) ethylene diamine (DPTDEDA, C12H26N2O4P2S2) was synthesized by the reaction of neopentyl glycol, phosphorus thio-chloride and 1,2-ethylenediamine, and characterized by elemental analysis, IR and ^1H NMR spectra. Its crystal structure was determined by single-crystal X-ray diffraction analysis and the thermal property was analyzed by TG analysis. The crystal structure belongs to monoclinic, space group P21/c, with a = 14.557(16), b = 11.299(12), c = 12.163(13)A,β = 98.707(19)^o, Dc = 1.305 g/cm^3, Z = 4, γ = 0.71073A,μ(MoKa) = 0.447 mm^-1, Mr = 388.41, V = 1977(4)A3, F(000) = 824, S = 1.107, the final R = 0.0478 and wR = 0.0810 for 1738 observed reflections (I 〉 2σ(I)). X-ray analysis reveals that the crystal structure is centrosymmetrically distributed through 1,2-ethylenediamine to join two distorted six-membered rings. The weak N-H…S interactions are observed and link the molecules into sheets. TG analysis shows that the title compound has good thermal stability and char-forming capability, which are required for an excellent intumescent fire retardant.展开更多
The mixed-quadriligand bismuth complex [Bi(S2CNEt2)2(NO3)]?[1,10-Phen] has been synthesized, and its crystal structure was determined by X-ray single-crystal diffraction. The crystal belongs to monoclinic, space gro...The mixed-quadriligand bismuth complex [Bi(S2CNEt2)2(NO3)]?[1,10-Phen] has been synthesized, and its crystal structure was determined by X-ray single-crystal diffraction. The crystal belongs to monoclinic, space group P21/n with a = 10.074(17), b = 15.05(2), c = 18.99(3) ?, β = 98.85(3)o, V = 2845(8) ?3, Z = 4, F(000) = 1464, Dc = 1.746 g/cm3, μ = 6.523 mm-1, R = 0.0333 and wR = 0.0703. In this complex, the bismuth atom is eight-coordinated in a capped distorted pentagonal bipyramidal geometry.展开更多
基金Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEMS‐202101National Natural Science Foundation of China,Grant/Award Numbers:51902162,51902162+4 种基金National Key R&D Program of China,Grant/Award Number:2022YFB4201904Foundation of Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEM‐S‐202101National Key R&D Program,Grant/Award Number:2022YFB4201904Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources,the International Innovation Center for Forest Chemicals and Materialsanjing Forestry University。
文摘Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+)diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−)and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1)at 0.05 A g^(−1)and superior stability(96.5%retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+)and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+)migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.
基金supported in part by the National Natural Science Foundation of China(62373348)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D05)+1 种基金the Tianshan Talent Training Program(2023TSYCLJ0021)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.
基金We gratefully acknowledge financial supports from the National Natural Science Foundation of China(No.52202371,51905125,52102364)the Natural Science Foundation of Shandong Province(No.ZR2020QE066)+2 种基金Opening Project of State Key Laboratory of Advanced Technology for Float Glass(No.2020KF08)SDUT&Zibo City Integration Development Project(No.2021SNPT0045)the fellowship of China Postdoctoral Science Foundation(No.2020M672081).
文摘Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404008)the Innovation Training Program for College Students of Shanxi Province of China(Grant No.S201910721061)the Innovation Training Program for College Students of Baoji University of Arts and Sciences(Grant No.20191XJ087)。
文摘Bimetallic clusters have aroused tremendous interest because the property changes like structure,size,and composition have occurred.Herein,a structural search of the global minimum for anionic LiMg_(n)^(-)(n=2-11) clusters is performed using an efficient crystal structure analysis by particle swarm optimization(CALYPSO) structural searching program with subsequent density functional theory(DFT) calculations.A great variety of low energetic isomers are converged,and the most stable ones are confirmed by comparing their total energy of each size.It is found that the LiMg_(n)^(-)clusters are structurally consistent with corresponding Mg clusters anions except for LiMg_(5)^(-)and LiMg_(7)^(-).In all the doped clusters,the Li atom prefers to occupy the convex position.Simulated photoelectron spectra(PES),Infrared(IR),and Raman spectra of LiMg_(n)^(-)could be used as an essential evidence for identifying cluster structures experimentally in the future.Stability study reveals that a tower-like structure of LiMg_(9)^(-)has prominent stability and can be identified as a magic number cluster.The reason might be that there are both closed-shell 1S^(2)1P^(6)1D^(10)2S^(2) electronic configurations and stronger Li-Mg bonds caused by sp hybridization in the LiMg_(9)^(-)cluster.
文摘Aimed at studying normali zed radial basis function network (NRBFN), this paper introduces the subtractiv e clustering based on a mountain function to construct the initial structure of NR BFN, adopts singular value decomposition (SVD) to analyze the relationship betwe en neural nodes of the hidden layer and singular values, cumulative contribution ratio, index vector, and optimizes the structure of NRBFN. Finally, simulation and performance comparison show that the algorithm is feasible and effective.
基金the National Natural Science Foundation of China(Grant Nos.32192434,42007102)Natural Science Foundation of Fujian Province(Grant No.2020J01376)+1 种基金the Start-up Foundation for Advanced Talents in Sanming University(Grant No.19YG13)Educational Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education(Grant No.JAT190704).
文摘Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation.
基金supported by the Natural Science Foundation of Jiangsu Province (No.BK2006710) the Hi-Tech Research and Development Program (863) of China (No:2003AA601100)
文摘Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.
基金supported by the National Natural Science Foundation of China (No. 50074014)
文摘Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.
文摘In order to minimize the self-heating effect of the classic SOI devices,SOI structures with Si3 N4 film as a buried insulator (SOSN) are successfully formed using epitaxial layer transfer technology for the first time. The new SOI structures are investigated with high-resolution cross-sectional transmission electron microscopy and spreading resistance profile. Experiment results show that the buried Si3 N4 layer is amorphous and the new SOI material has good structural and electrical properties. The output current characteristics and temperature distribution are simulated and compared to those of standard SOI MOSFETs. Furthermore, the channel temperature and negative differential resistance are reduced during high-temperature operation, suggesting that SOSN can effectively mitigate the selfheating penalty. The new SOI device has been verified in two-dimensional device simulation and indicated that the new structures can reduce device self-heating and increase drain current of the SOI MOSFET.
文摘The crystal structure of the title compound ((C 6H 5CONC 6H 4S) 2, M r =229) has been determined by X ray diffraction analysis. The crystal belongs to triclinic space group P 1 with cell parameters: a=7.957(4), b=11.570(7), c=12 335(6), α=76.68(4), β=81.48(4), γ=87.26(4)°, V=1092.9 3, Z=2, D c =1 39g/cm 3, F(000)=476, μ (Mo Kα )=2.7mm -1 . The final R factor is 0.0373 for 3764 observed reflections. The result of X ray diffraction analysis indicates that all of these single bond lengths are obviously shorter than that of standard single bond. Those atoms might take part in a conjugate system. The electrons for sp 3 hybridized S(1) and S(2) move toward two sides and the densities of electronic cloud among them are reduced and can be easily broken. The obtained results can explain the reaction mechanism of the title compound.
基金National Basic Research Program (2004CCA00500)National High-tech Development Research Program of China (2006AA02Z440)
文摘The structure genes spike(S) ,nucleocapsid(N) ,membrane(M) ,small membrane(sM) of a porcine epidemic diarrhea virus(PEDV) strain DX isolated in Gansu province,North-west of China,were cloned,sequenced and compared with published sequences of PEDV strains. The nucleotide sequences encoding the entire S,sM,M and N genes open reading frame(ORF) of DX were 4 152,231,681 and 1 326 bases long respectively. There were transcription regulatory sequences(TRSs) upstream of the initiator ATG of the S,N and M genes. The amino acids sequences of S,M and N contained 30,3 and 7 potential asparagine(N) -linked glycosylation sites. Homologous analysis and phylogenetic trees showed that DX had the closest relationship with strains LJB/06,JS-2004-2Z and CH/HLJH/06 that were also isolated from China and indicated the prevalence of some PEDV isolates in China were widespread since the JS-2004-2Z strain originated from the south of the China,and LJB/06 and CH/HLJH/06 were isolated from northeast China. The N gene was cloned using two primers which contained Nco I and BamH I restriction enzyme sites and subcloned into expression vector pET30a. The recombinant plasmid was then transformed into E.coli Rossta. SDS-PAGE showed there was a protein of about 55kDa as expected and Western blot indicated the N protein had biological activity.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.:71473028)the Project of Dalian University of Technology (DLUT) Educational Reform(Grant No.:ZD201509)
文摘Purpose: This paper aims to gain an insight into the disciplinary structure of nanoscience & nanotechnology (N&N): What is the disciplinary network of N&N like? Which disciplines are being integrated into N&N over time? For a specific discipline, how many other disciplines have direct or indirect connections with it? What are the distinct subgroups of N&N at different evolutionary stages? Such critical issues are to be addressed in this paper. Design/methodology/approach: We map the disciplinary network structure of N&N by employing the social network analysis tool, Netdraw, identifying which Web of Science Categories (WCs) mediate nbetweenness centrality in different stages of nano development. Cliques analysis embedded in the Ucinet program is applied to do the disciplinary cluster analysis in the study according to the path of "Network-Subgroup-Cliques," and a tree diagram is selected as the visualizing type. Findings: The disciplinary network structure reveals the relationships among different disciplines in the N&N developing process clearly, and it is easy for us to identify which disciplines are connected with the core "N&N" directly or indirectly. The tree diagram showing N&N related disciplines provides an interesting perspective on nano research and development (R&D) structure. Research limitations: The matrices used to draw the N&N disciplinary network are the original ones, and normalized matrix could be tried in future similar studies. Practical implications: Results in this paper can help us better understand the disciplinary structure of N&N, and the dynamic evolution of N&N related disciplines over time. The findings could benefit R&D decision making. It can support policy makers from government agencies engaging in science and technology (S&T) management or S&T strategy planners to formulate efficient decisions according to a perspective of converging sciences and technologies. Originality/value: The novelty of this study lies in mapping the disciplinary network structure of N&N clearly, identifying which WCs have a mediating effect in different developmental stages (especially analyzing clusters among disciplines related to N&N, revealing close or distant relationships among distinct areas pertinent to N&N).
基金supported by International Science and Technology Collaboration Program of China (2007DFA-30980)Program for Changjiang Scholars,Innovative Research Team in University (IRT0944)+1 种基金Natural Science Foundation of China (31070724)Special Fund for Marine Scientific Research in the Public Interest (201005024)
文摘Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, relative molecular mass and structural characterization were determined by gas chromatography, high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy methods. EW was hybrid l/k/v-carrageenan (701/17k/13v-car- rabiose), EH was mainly t-carrageenan, and EA was mainly α-1,4-Glucan (88%) but mixed with small amount of t-carrageenan (12%). The relative molecular mass ofEW, EH and EA was 480, 580 and 510kDa, respectively. The anti-influenza A (H1N1) virus activity of these three polysaccharides was evaluated using the Madin-Darby canine kidney cells model. EW showed good anti-H1N1 virus activity, its ICso was 276.5 μg mL-1, and the inhibition rate to H1N1 virus was 52% when its concentration was 250 μgmL-1. The ICs0 of t-carrageenan EH was 366.4 μgmL1, whereas EA showed lower anti-H1N1 virus activity (IC50〉430μgmL-1). Available data obtained give positive evidence that the hybrid carrageenan EW from Eueheuma denticulatum can be used as potential anti-H1N1 virus inhibitor in future.
基金supported by the Specialized Innovation of Social and People’s Livelihood in Chongqing(cstc2016shmszx20012)Converting Outstanding Achievements of University-Funded Projects of Chongqing(KJZH17122)+3 种基金the National Natural Science Foundation of China(5160080705)the Key Laboratory Open Project from Chongqing Technology and Business University(1556036)Innovative Research Project from Chongqing Technology and Business University(yjscxx2016-060-34)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ130704)~~
文摘g-C3N4 is a hot visible light photocatalyst. However, the fast recombination of photogenerated electron- hole pairs leads to unsatisfactory photocatalytic efficiencies. In this study, Mg/O co-decorated amorphous carbon nitride (labeled as MgO-CN) with a unique electronic structure was designed and prepared via a combined experimental and theoretical approach. The results showed that the MgO-CN exhibited an increased light absorption ability and promoted charge separation efficiency. The Mg and O co-decoration created a unique structure that could generate localized electrons around O atoms and enhance the reactant activation capacities via the C→O←Mg route. This could dramatically promote the O2 molecule activation on the catalyst surface to generate reactive species (?O2 –/?OH). The optimized MgO-CN exhibited a high photocatalytic activity for the degradation of tetracycline hydrochloride in water, which was five times higher than that of pristine g-C3N4. The present work could provide a new strategy for modifying the electronic structure of g-C3N4 and enhancing its performance for environmental applications.
基金This work was supported by the China Petroleum & Chemical Science and Technology Foundation (No. 205026) the Tianjin Science and Technology Plan Foundation (No. 06TXTJJC14400)
文摘The title compound N,N'-bis(5,5-dimethyl-2-phospha-2-thio-1,3-dioxan-2-yl) ethylene diamine (DPTDEDA, C12H26N2O4P2S2) was synthesized by the reaction of neopentyl glycol, phosphorus thio-chloride and 1,2-ethylenediamine, and characterized by elemental analysis, IR and ^1H NMR spectra. Its crystal structure was determined by single-crystal X-ray diffraction analysis and the thermal property was analyzed by TG analysis. The crystal structure belongs to monoclinic, space group P21/c, with a = 14.557(16), b = 11.299(12), c = 12.163(13)A,β = 98.707(19)^o, Dc = 1.305 g/cm^3, Z = 4, γ = 0.71073A,μ(MoKa) = 0.447 mm^-1, Mr = 388.41, V = 1977(4)A3, F(000) = 824, S = 1.107, the final R = 0.0478 and wR = 0.0810 for 1738 observed reflections (I 〉 2σ(I)). X-ray analysis reveals that the crystal structure is centrosymmetrically distributed through 1,2-ethylenediamine to join two distorted six-membered rings. The weak N-H…S interactions are observed and link the molecules into sheets. TG analysis shows that the title compound has good thermal stability and char-forming capability, which are required for an excellent intumescent fire retardant.
基金This project was supported by the National Natural Science Foundation of China (No. 20271025) and Natural Science Foundation of Shandong Province (No. L2003B01)
文摘The mixed-quadriligand bismuth complex [Bi(S2CNEt2)2(NO3)]?[1,10-Phen] has been synthesized, and its crystal structure was determined by X-ray single-crystal diffraction. The crystal belongs to monoclinic, space group P21/n with a = 10.074(17), b = 15.05(2), c = 18.99(3) ?, β = 98.85(3)o, V = 2845(8) ?3, Z = 4, F(000) = 1464, Dc = 1.746 g/cm3, μ = 6.523 mm-1, R = 0.0333 and wR = 0.0703. In this complex, the bismuth atom is eight-coordinated in a capped distorted pentagonal bipyramidal geometry.