The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advan...The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advanced tools and techniques for attacking targets with specific goals.Even countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted attack.APT is a sophisticated attack that involves multiple stages and specific strategies.Besides,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security system.However,APTs are generally implemented in multiple stages.If one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack failure.The detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing challenges.This survey paper will provide knowledge about APT attacks and their essential steps.This follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the work.Data used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack.展开更多
The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers c...The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers complete data protection from Advanced Persistent Threat(APT)attacks with attack detection and defence mechanisms.The modified lateral movement detection algorithm detects the APT attacks,while the defence is achieved by the Dynamic Deception system that makes use of the belief update algorithm.Before termination,every cyber-attack undergoes multiple stages,with the most prominent stage being Lateral Movement(LM).The LM uses a Remote Desktop protocol(RDP)technique to authenticate the unauthorised host leaving footprints on the network and host logs.An anomaly-based approach leveraging the RDP event logs on Windows is used for detecting the evidence of LM.After extracting various feature sets from the logs,the RDP sessions are classified using machine-learning techniques with high recall and precision.It is found that the AdaBoost classifier offers better accuracy,precision,F1 score and recall recording 99.9%,99.9%,0.99 and 0.98%.Further,a dynamic deception process is used as a defence mechanism to mitigateAPTattacks.A hybrid encryption communication,dynamic(Internet Protocol)IP address generation,timing selection and policy allocation are established based on mathematical models.A belief update algorithm controls the defender’s action.The performance of the proposed system is compared with the state-of-the-art models.展开更多
As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respo...As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.展开更多
The number of cybersecurity incidents is on the rise despite significant investment in security measures.The existing conventional security approaches have demonstrated limited success against some of the more complex...The number of cybersecurity incidents is on the rise despite significant investment in security measures.The existing conventional security approaches have demonstrated limited success against some of the more complex cyber-attacks.This is primarily due to the sophistication of the attacks and the availability of powerful tools.Interconnected devices such as the Internet of Things(IoT)are also increasing attack exposures due to the increase in vulnerabilities.Over the last few years,we have seen a trend moving towards embracing edge technologies to harness the power of IoT devices and 5G networks.Edge technology brings processing power closer to the network and brings many advantages,including reduced latency,while it can also introduce vulnerabilities that could be exploited.Smart cities are also dependent on technologies where everything is interconnected.This interconnectivity makes them highly vulnerable to cyber-attacks,especially by the Advanced Persistent Threat(APT),as these vulnerabilities are amplified by the need to integrate new technologies with legacy systems.Cybercriminals behind APT attacks have recently been targeting the IoT ecosystems,prevalent in many of these cities.In this paper,we used a publicly available dataset on Advanced Persistent Threats(APT)and developed a data-driven approach for detecting APT stages using the Cyber Kill Chain.APTs are highly sophisticated and targeted forms of attacks that can evade intrusion detection systems,resulting in one of the greatest current challenges facing security professionals.In this experiment,we used multiple machine learning classifiers,such as Naïve Bayes,Bayes Net,KNN,Random Forest and Support Vector Machine(SVM).We used Weka performance metrics to show the numeric results.The best performance result of 91.1%was obtained with the Naïve Bayes classifier.We hope our proposed solution will help security professionals to deal with APTs in a timely and effective manner.展开更多
文摘The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advanced tools and techniques for attacking targets with specific goals.Even countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted attack.APT is a sophisticated attack that involves multiple stages and specific strategies.Besides,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security system.However,APTs are generally implemented in multiple stages.If one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack failure.The detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing challenges.This survey paper will provide knowledge about APT attacks and their essential steps.This follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the work.Data used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack.
文摘The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers complete data protection from Advanced Persistent Threat(APT)attacks with attack detection and defence mechanisms.The modified lateral movement detection algorithm detects the APT attacks,while the defence is achieved by the Dynamic Deception system that makes use of the belief update algorithm.Before termination,every cyber-attack undergoes multiple stages,with the most prominent stage being Lateral Movement(LM).The LM uses a Remote Desktop protocol(RDP)technique to authenticate the unauthorised host leaving footprints on the network and host logs.An anomaly-based approach leveraging the RDP event logs on Windows is used for detecting the evidence of LM.After extracting various feature sets from the logs,the RDP sessions are classified using machine-learning techniques with high recall and precision.It is found that the AdaBoost classifier offers better accuracy,precision,F1 score and recall recording 99.9%,99.9%,0.99 and 0.98%.Further,a dynamic deception process is used as a defence mechanism to mitigateAPTattacks.A hybrid encryption communication,dynamic(Internet Protocol)IP address generation,timing selection and policy allocation are established based on mathematical models.A belief update algorithm controls the defender’s action.The performance of the proposed system is compared with the state-of-the-art models.
文摘As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.
基金supported in part by the School of Computing and Digital Technology at Birmingham City UniversityThe work of M.A.Rahman was supported in part by the Flagship Grant RDU190374.
文摘The number of cybersecurity incidents is on the rise despite significant investment in security measures.The existing conventional security approaches have demonstrated limited success against some of the more complex cyber-attacks.This is primarily due to the sophistication of the attacks and the availability of powerful tools.Interconnected devices such as the Internet of Things(IoT)are also increasing attack exposures due to the increase in vulnerabilities.Over the last few years,we have seen a trend moving towards embracing edge technologies to harness the power of IoT devices and 5G networks.Edge technology brings processing power closer to the network and brings many advantages,including reduced latency,while it can also introduce vulnerabilities that could be exploited.Smart cities are also dependent on technologies where everything is interconnected.This interconnectivity makes them highly vulnerable to cyber-attacks,especially by the Advanced Persistent Threat(APT),as these vulnerabilities are amplified by the need to integrate new technologies with legacy systems.Cybercriminals behind APT attacks have recently been targeting the IoT ecosystems,prevalent in many of these cities.In this paper,we used a publicly available dataset on Advanced Persistent Threats(APT)and developed a data-driven approach for detecting APT stages using the Cyber Kill Chain.APTs are highly sophisticated and targeted forms of attacks that can evade intrusion detection systems,resulting in one of the greatest current challenges facing security professionals.In this experiment,we used multiple machine learning classifiers,such as Naïve Bayes,Bayes Net,KNN,Random Forest and Support Vector Machine(SVM).We used Weka performance metrics to show the numeric results.The best performance result of 91.1%was obtained with the Naïve Bayes classifier.We hope our proposed solution will help security professionals to deal with APTs in a timely and effective manner.