The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method...The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.展开更多
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si...Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.展开更多
Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence i...Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures that the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss which has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than other models;we attribute this to the dataset’s low dimensionality as the most probable explanation.展开更多
The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the rob...The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the robustness of the deep learning based spectrum sensing model.PUAA adds a care-fully manufactured perturbation to the benign primary user signal,which greatly reduces the probability of detection of the spectrum sensing model.We design three PUAA methods in black box scenario.In or-der to defend against PUAA,we propose a defense method based on autoencoder named DeepFilter.We apply the long short-term memory network and the convolutional neural network together to DeepFilter,so that it can extract the temporal and local features of the input signal at the same time to achieve effective defense.Extensive experiments are conducted to eval-uate the attack effect of the designed PUAA method and the defense effect of DeepFilter.Results show that the three PUAA methods designed can greatly reduce the probability of detection of the deep learning-based spectrum sensing model.In addition,the experimen-tal results of the defense effect of DeepFilter show that DeepFilter can effectively defend against PUAA with-out affecting the detection performance of the model.展开更多
Due to the increasing cyber-attacks,various Intrusion Detection Systems(IDSs)have been proposed to identify network anomalies.Most existing machine learning-based IDSs learn patterns from the features extracted from n...Due to the increasing cyber-attacks,various Intrusion Detection Systems(IDSs)have been proposed to identify network anomalies.Most existing machine learning-based IDSs learn patterns from the features extracted from network traffic flows,and the deep learning-based approaches can learn data distribution features from the raw data to differentiate normal and anomalous network flows.Although having been used in the real world widely,the above methods are vulnerable to some types of attacks.In this paper,we propose a novel attack framework,Anti-Intrusion Detection AutoEncoder(AIDAE),to generate features to disable the IDS.In the proposed framework,an encoder transforms features into a latent space,and multiple decoders reconstruct the continuous and discrete features,respectively.Additionally,a generative adversarial network is used to learn the flexible prior distribution of the latent space.The correlation between continuous and discrete features can be kept by using the proposed training scheme.Experiments conducted on NSL-KDD,UNSW-NB15,and CICIDS2017 datasets show that the generated features indeed degrade the detection performance of existing IDSs dramatically.展开更多
Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS...Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS),has spatiotemporal characteristics and many missing values.High missing values in data lead to the decreased predictive performance of models.Existing missing value imputation models ignore the topology of transportation net-works due to the structural connection of road networks,although physical distances are close in spatiotemporal image data.Additionally,the learning process of missing value imputation models requires complete data,but there are limitations in securing complete vehicle communication data.This study proposes a missing value imputation model based on adversarial autoencoder using spatiotemporal feature extraction to address these issues.The proposed method replaces missing values by reflecting spatiotemporal characteristics of transportation data using temporal convolution and spatial convolution.Experimental results show that the proposed model has the lowest error rate of 5.92%,demonstrating excellent predictive accuracy.Through this,it is possible to solve the data sparsity problem and improve traffic safety by showing superior predictive performance.展开更多
Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological struct...Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed.展开更多
基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对...基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对抗样本和自编码器的鲁棒异常检测(Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder,RAD-ASAE)方法。RAD-ASAE由两个参数共享的编码器和一个解码器构成。首先,对正常样本施加微小的扰动以生成对抗样本,利用正常样本和对抗样本同时对模型进行训练,以提高模型的对抗鲁棒性;其次,在样本空间中最小化对抗样本的重构误差以及正常样本与对抗样本的重构样本之间的均方误差,同时在潜在空间中最小化正常样本和对抗样本的潜在特征之间的均方误差,以提高自编码器的重构能力。在MNIST,Fashion-MNIST,CIFAR-10数据集上进行实验,结果表明,与7种相关方法相比,RAD-ASAE展现了更优的异常检测性能。展开更多
基金supported by the National Natural Science Foundation of China(62203431)。
文摘The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.
文摘Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.
文摘Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures that the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss which has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than other models;we attribute this to the dataset’s low dimensionality as the most probable explanation.
基金the National Nat-ural Science Foundation of China under Grant No.62072406,No.U19B2016,No.U20B2038 and No.61871398the Natural Science Foundation of Zhejiang Province under Grant No.LY19F020025the Major Special Funding for“Science and Tech-nology Innovation 2025”in Ningbo under Grant No.2018B10063.
文摘The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the robustness of the deep learning based spectrum sensing model.PUAA adds a care-fully manufactured perturbation to the benign primary user signal,which greatly reduces the probability of detection of the spectrum sensing model.We design three PUAA methods in black box scenario.In or-der to defend against PUAA,we propose a defense method based on autoencoder named DeepFilter.We apply the long short-term memory network and the convolutional neural network together to DeepFilter,so that it can extract the temporal and local features of the input signal at the same time to achieve effective defense.Extensive experiments are conducted to eval-uate the attack effect of the designed PUAA method and the defense effect of DeepFilter.Results show that the three PUAA methods designed can greatly reduce the probability of detection of the deep learning-based spectrum sensing model.In addition,the experimen-tal results of the defense effect of DeepFilter show that DeepFilter can effectively defend against PUAA with-out affecting the detection performance of the model.
文摘Due to the increasing cyber-attacks,various Intrusion Detection Systems(IDSs)have been proposed to identify network anomalies.Most existing machine learning-based IDSs learn patterns from the features extracted from network traffic flows,and the deep learning-based approaches can learn data distribution features from the raw data to differentiate normal and anomalous network flows.Although having been used in the real world widely,the above methods are vulnerable to some types of attacks.In this paper,we propose a novel attack framework,Anti-Intrusion Detection AutoEncoder(AIDAE),to generate features to disable the IDS.In the proposed framework,an encoder transforms features into a latent space,and multiple decoders reconstruct the continuous and discrete features,respectively.Additionally,a generative adversarial network is used to learn the flexible prior distribution of the latent space.The correlation between continuous and discrete features can be kept by using the proposed training scheme.Experiments conducted on NSL-KDD,UNSW-NB15,and CICIDS2017 datasets show that the generated features indeed degrade the detection performance of existing IDSs dramatically.
基金supported by the MSIT (Ministry of Science and ICT),Korea,under the ITRC (Information Technology Research Center)support program (IITP-2018-0-01405)supervised by the IITP (Institute for Information&Communications Technology Planning&Evaluation).
文摘Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS),has spatiotemporal characteristics and many missing values.High missing values in data lead to the decreased predictive performance of models.Existing missing value imputation models ignore the topology of transportation net-works due to the structural connection of road networks,although physical distances are close in spatiotemporal image data.Additionally,the learning process of missing value imputation models requires complete data,but there are limitations in securing complete vehicle communication data.This study proposes a missing value imputation model based on adversarial autoencoder using spatiotemporal feature extraction to address these issues.The proposed method replaces missing values by reflecting spatiotemporal characteristics of transportation data using temporal convolution and spatial convolution.Experimental results show that the proposed model has the lowest error rate of 5.92%,demonstrating excellent predictive accuracy.Through this,it is possible to solve the data sparsity problem and improve traffic safety by showing superior predictive performance.
基金Supported by the Strategy Priority Research Program of Chinese Academy of Sciences(No.XDC02070600).
文摘Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed.
文摘基于自编码器的异常检测方法仅利用正常样本进行训练,因此可以有效地重构正常样本,但不能较好地对异常样本进行重构。另外,当基于自编码器的异常检测方法受到对抗攻击时,往往会取得错误的检测结果。为了解决上述问题,提出了一种基于对抗样本和自编码器的鲁棒异常检测(Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder,RAD-ASAE)方法。RAD-ASAE由两个参数共享的编码器和一个解码器构成。首先,对正常样本施加微小的扰动以生成对抗样本,利用正常样本和对抗样本同时对模型进行训练,以提高模型的对抗鲁棒性;其次,在样本空间中最小化对抗样本的重构误差以及正常样本与对抗样本的重构样本之间的均方误差,同时在潜在空间中最小化正常样本和对抗样本的潜在特征之间的均方误差,以提高自编码器的重构能力。在MNIST,Fashion-MNIST,CIFAR-10数据集上进行实验,结果表明,与7种相关方法相比,RAD-ASAE展现了更优的异常检测性能。