To break the narrow diversity bottleneck of the wheat D genome, a set of Aegilops tauschii-wheat introgression(A-WI) lines was developed by crossing Ae. tauschii accession T015 with common wheat elite cultivar Zhoumai...To break the narrow diversity bottleneck of the wheat D genome, a set of Aegilops tauschii-wheat introgression(A-WI) lines was developed by crossing Ae. tauschii accession T015 with common wheat elite cultivar Zhoumai 18(Zhou18). A high-density genetic map was constructed based on Single Nucleotide Polymorphism(SNP) markers and 15 yield-related traits were evaluated in 11 environments for detecting quantitative trait loci(QTL). A total of 27 environmentally stable QTL were identified in at least five environments, 20 of which were derived from Ae. tauschii T015, explaining up to 24.27% of the phenotypic variations. The major QTL for kernel length(KL), QKl-2D.5, was delimited to a physical interval of approximately 2.6 Mb harboring 52 candidate genes. Three Kompetitive Allele Specific PCR(KASP)markers were successfully developed based on nonsynonymous nucleotide mutations of candidate gene AetT093_2Dv1G100900.1 and showed that A-WI lines with the T015 haplotype had significantly longer KL than the Zhou18 haplotype across all 11 environments. Four primary valuable A-WIs with good trait performance and carrying yield-related QTL were selected for breeding improvement. The results will facilitate the efficient transfer of beneficial genes from Ae. tauschii into wheat cultivars to improve wheat yield and other traits.展开更多
An artificial amphiploid RSP (2n = 42, AABBDD) between tetraploid landrace Ailanmai (Triticum turgidum L., 2n= 28, AABB) and Aegllops tauschii (DD, 2n = 14) expressed high tolerance to preharvest sprouting which deriv...An artificial amphiploid RSP (2n = 42, AABBDD) between tetraploid landrace Ailanmai (Triticum turgidum L., 2n= 28, AABB) and Aegllops tauschii (DD, 2n = 14) expressed high tolerance to preharvest sprouting which derived from Ae. tauschii. Tolerance to preharvest sprouting of RSP was examined by four ways in six varying periods after anthesis. The germination percentages of preharvest intact spikes were only 6.06% in its high peak period of germination. Its tolerance was mainly decided by the seed dormancy. It was showed that the tolerance to sprouting in ' RSP' derived from Ae. tauschii was inherited as a recessive trait which was controlled by one gene, located on chromosome 2D.展开更多
Common or bread wheat ( Triticum aestivum L., AABBDD, 2n=42) originated ca. 8 000 years ago from hybridization of tetraploid wheat ( Triticum turgidum L., AABB, 2n=28) and diploid Aegilops tauschii Coss. (DD...Common or bread wheat ( Triticum aestivum L., AABBDD, 2n=42) originated ca. 8 000 years ago from hybridization of tetraploid wheat ( Triticum turgidum L., AABB, 2n=28) and diploid Aegilops tauschii Coss. (DD, 2n=14). An essential prerequisite for this evolutionary step is that the natural hybrids between tetraploid wheat and diploid Aegilops tauschii can produce relatively many filled seeds which germinated well. In this study, without special techniques, e.g. immature embryo culture, out of 22 Ae. tauschii accessions, the genotype AS60 produced relatively many filled seeds which germinated well. The seed germination percentages in the crosses of Ae. tauschii ×tetraploid wheat, tetraploid wheat× Ae. tauschii and Ae. tauschii ×common wheat were, respectively, 50.0%, 57.1% and 45.5%. It seems that Ae. tauschii accession AS60 has a unique genotype which facilitate hybrid seed development and viability, and which meets with the prerequisite for wheat evolutionary. Furthermore, the significance of this finding for common wheat improvement and evolution was discussed.展开更多
Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedse...Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F1 hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.展开更多
Seven important grain traits, including grain length(GL), grain width(GW), grain perimeter(GP), grain area(GA), grain length/width ratio(GLW), roundness(GR), and thousand-grain weight(TGW), were analyzed...Seven important grain traits, including grain length(GL), grain width(GW), grain perimeter(GP), grain area(GA), grain length/width ratio(GLW), roundness(GR), and thousand-grain weight(TGW), were analyzed using a set of 139 simple sequence repeat(SSR) markers in 130 hexaploid wheat varieties and 193 Aegilops tauschii accessions worldwide. In total, 1 612 alleles in Ae. tauschii and 1 360 alleles in hexaploid wheat(Triticum aestivum L.) were detected throughout the D genome. 197 marker-trait associations in Ae. tauschii were identified with 58 different SSR loci in 3 environments, and the average phenotypic variation value(R2) ranged from 0.68 to 15.12%. In contrast, 208 marker-trait associations were identified in wheat with 66 different SSR markers in 4 environments and the average phenotypic R2 ranged from 0.90 to 19.92%. Further analysis indicated that there are 6 common SSR loci present in both Ae. tauschii and hexaploid wheat, which are significantly associated with the 5 investigated grain traits(i.e., GA, GP, GR, GL, and TGW) and in total, 16 alleles derived from the 6 aforementioned SSR loci were shared by Ae. tauschii and hexaploid wheat. These preliminary data suggest the existence of common alleles may explain the evolutionary process and the selection between Ae. tauschii and hexaploid wheat. Furthermore, the genetic differentiation of grain shape and thousand-grain weight were observed in the evolutionary developmental process from Ae. tauschii to hexaploid wheat.展开更多
Aegilops tauschii Ais a wild relative of common wheat(Triticum aestivum) and acts as an important resource of elite genes including genes for resistance to biotic and abiotic stresses. To improve the cadmium(Cd) toler...Aegilops tauschii Ais a wild relative of common wheat(Triticum aestivum) and acts as an important resource of elite genes including genes for resistance to biotic and abiotic stresses. To improve the cadmium(Cd) tolerance of wheat varieties using A. tauschii resources, we investigated the genetic variation of biomass-based Cd tolerance in 235 A. tauschii accessions treated with 0(control) and100 μmol L-1CdC l2(as Cd stress). Simultaneously, we performed a genomewide association study(GWAS) using a single-nucleotide polymorphism chip containing 7185 markers. Six markers were found to be significantly associated with Cd tolerance by a general linear model and a mixed linear model. These markers were close to several candidate/flanking genes associated with Cd tolerance according to results in public databases, including pdil5-1, Acc-1, DME-5A,TaA P2-D, TaA P2-B, Vrn-B1, and FtsH-like protein gene. The A. tauschii accessions were classified as high, moderate, and low Cd-tolerant according to a secondary index, the synthetic index(SI), in proportions of 9%, 57%, and 34%, respectively. By the average SI, accessions from Afghanistan,Turkey, Azerbaijan, and Iran showed relatively high Cd tolerance.展开更多
The rich genetic variation preserved in collections of Aegilops tauschii can be readily exploited to improve common wheat using synthetic hexaploid wheat lines. However,hybrid necrosis, which is characterized by progr...The rich genetic variation preserved in collections of Aegilops tauschii can be readily exploited to improve common wheat using synthetic hexaploid wheat lines. However,hybrid necrosis, which is characterized by progressive death of leaves or plants, has been observed in certain interspecific crosses between tetraploid wheat and Ae. tauschii. The aim of this study was to construct a fine genetic map of a gene(temporarily named Net Jing Y176)conferring hybrid necrosis in Ae. tauschii accession Jing Y176. A triploid F1 population derived from distant hybridization between Ae. tauschii and tetraploid wheat was used to map the gene with microsatellite markers. The newly developed markers Xsdau K539 and Xsdau K561 co-segregated with Net Jing Y176 on chromosome arm 2DS. The tightly linked markers developed in this study were used to genotype 91 Ae. tauschii accessions. The marker genotype analysis suggested that 49.45% of the Ae. tauschii accessions carry Net Jing Y176. Interestingly, hybrid necrosis genotypes tended to appear more commonly in Ae. tauschii ssp. tauschii than in Ae. tauschii ssp. strangulata.展开更多
Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome of common wheat(Triticum aestivum), of which Ae. tauschii is the source. Since the 1980 s,there have been numerous effo...Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome of common wheat(Triticum aestivum), of which Ae. tauschii is the source. Since the 1980 s,there have been numerous efforts to harness a much larger share of Ae. tauschii^ extensive and highly variable gene pool for wheat improvement. Those efforts have followed two distinct approaches: production of amphiploids, known as "synthetic hexaploids," between T. turgidum and Ae. tauschii,and direct hybridization between 丁. aestiuum and Ae. tauschii;both approaches then involve backcrossing to 丁. aestiuum. Both synthetic hexaploid production and direct hybridization have led to the transfer of numerous new genes into common wheat that confer improvements in many traits. This work has led to release of improved cultivars in China, the United States, and many other countries. Each approach to D-genome improvement has advantages and disadvantages. For example, production of synthetic hexaploids can incorporate useful germplasm from both T. turgidum and Ae.tauschii, thereby enhancing the A, B, and D genomes; on the other hand, direct hybridization rapidly restores the recurrent parent's A and B genomes and avoids incorporation of genes with adverse effects on threshability, hybrid necrosis, vernalization response, milling and baking quality, and other traits, which are often transferred when T. turgidum is used as a parent. Choice of method will depend in part on the type of wheat being developed and the target environment. However, more extensive use of the so-far underexploited direct hybridization approach is especially warranted.展开更多
An optimum heading date is essential for sustainable crop productivity and ensuring high yields. In the present study, F2:3 populations were generated by crossing an early-heading accession, Y2280, with a late-headin...An optimum heading date is essential for sustainable crop productivity and ensuring high yields. In the present study, F2:3 populations were generated by crossing an early-heading accession, Y2280, with a late-heading accession, Y2282. The heading dates of the F2 and F3 populations were investigated in a field study. Using publicly available simple sequence repeat (SSR) markers, the early heading date gene HdAey2280 was mapped onto Aegilops tauschfi chromosome 7DS between the flanking markers wmc438 and barc126 at distances of 15 and 9.1 cM, respectively. Further analysis indicated that HdAey2280 is a novel heading date gene. New SSR markers were developed based on the Ae. tauschfi draft genome sequence, resulting in four new markers that were linked to the heading date gene HdAey2280. The closest distance of these markers was 1.9 cM away from the gene. The results collected in this study will serve as a framework for map-based cloning and marker-assisted selection in wheat breeding programs in the future.展开更多
The Q/q gene, also known as WAP2, is an important gene for wheat domestication and is a member of the AP2 (APETALA2) class of transcription factors. In the present study, we first isolated the WRAP2 allele (where t...The Q/q gene, also known as WAP2, is an important gene for wheat domestication and is a member of the AP2 (APETALA2) class of transcription factors. In the present study, we first isolated the WRAP2 allele (where the superscript "t" refers to the speciese source, in this case "tauschii") on chromosome 5D from Aegilops tauschii Coss., the D-genome donor species of common wheat. We found that WRAP2 and the AP2 gene from Arabidopsis share a central core of the AP2 polypeptide, a highly basic 10-amino acid domain, and an AASSGF box, although there are many differences in the 37-amino acid serine-rich acidic domain and the remaining regions. In addition, WRAP2 was highly homologous to the homoeologous loci on 5A and 5B of wheat at both the nucleotide and amino acid level. However, there were some variations that are probably related to gene function. In the first AP2 domain, the amino acids VYL on the 5D and 5A loci were replaced with LLR on 5B. In the 37-amino acid serine-rich acidic domain, WRAP2 on 5D had an extra amino acid insertion. There was also a variation at the 329 amino acid position, which is thought to be related to the appearance of free-threshing wheat. At this position, the amino acid is isoleucine on 5A for the Q allele and valine for the q allele, whereas the amino acid is leucine on 5D and 5B. Furthermore, a Stowaway miniature terminal inverted repeat element (MITE) insertion was present in the ninth intron of WAP2 on 5B of all common wheats and partial tetraploid Triticum turgidum wheats. These results provide new clues for studies into the evolutionary biology of WAP2 and the origin of common wheat.展开更多
For the purpose of broadening the available genetic resources to improve wheat breeding and to elucidate wheat evolution, 16 accessions of Aegilops tauschii newly collected in North Caucasia named NCT accessions were ...For the purpose of broadening the available genetic resources to improve wheat breeding and to elucidate wheat evolution, 16 accessions of Aegilops tauschii newly collected in North Caucasia named NCT accessions were characterized genetically based on morphology, chloroplast SSR variation and AFLP. Ae. tauschii is one of the most important wild wheat genetic resources because it is the progenitor of the D genome of hexaploid wheat. Since Caucasia is considered to be a center of diversity of both cultivated and wild wheat, a lot of studies have been conducted to evaluate the diversity of Caucasian genetic resources including Ae. tauschii. Such kind of analyses, however, focused on Transcaucasia but little attention has been paid to North Caucasia because of the lack of available genetic resources. Based on the molecular analyses in this study, the 16 NCT accessions were generally divided into two groups although morphologically those are classified into the same subspecies. The grouping also represented geographical distribution, that is, the northern part group and Derbent group. This division is consistent with the two major genepools in Ae. tauschii reported in previous studies. The northern part and Derbent groups correspond to Eurasian wide genepool (called Tauschii genepool) and Caucasia and Caspian coast limited genepool (Strangulata genepool), respectively. Regarding to chloroplast, all the 16 accessions were genotyped as HG7, the most major haplogroup of the species. Although all the 16 NCT accessions were categorized into ssp. tauschii morphologically, accessions of Derbent group showed a tendency to have larger spikelets. Among them, especially NCT3 had the quite large size of spikelets and grains that are at almost the largest level in ssp. tauschii. The results of this study filled the missing information of Ae. tauschii and will be helpful for future utilization.展开更多
The diploid wild goat grass Aegilops tauschii(Ae. tauschii, 2 n = 14;DD), as the D-sub genome of common wheat, provides rich germplasm resources for many aspects of wheat breeding. Abscisic acid(ABA) is an essential p...The diploid wild goat grass Aegilops tauschii(Ae. tauschii, 2 n = 14;DD), as the D-sub genome of common wheat, provides rich germplasm resources for many aspects of wheat breeding. Abscisic acid(ABA) is an essential phytohormone that plays a pivotal role in plant adaptation to abiotic stresses. However,the gene regulation network of Ae. tauschii in response to ABA stress remains unclear. Here, we conducted a time-course strand-specific RNA-sequencing study to globally profile the transcriptome that responded to ABA treatment in Ae. tauschii. We identified 4818 differentially expressed transcription units/genes with time-point-specific induction/repression patterns. Using functional annotation, one-to-one ortholog and comparative transcriptome profiling analyses, we identified 319 ABA-responsive Ae. tauschii orthologs that were also induced/repressed under ABA treatment in hexaploid wheat. On the quantitative trait loci(QTL) used in wheat marker-assisted breeding, we found that the ABA-responsive expression patterns of eight Ae. tauschii orthologs were associated with drought stress tolerance, flowering process and/or grain quality. Of them, the ABA-responsive gene encoding sucrose:sucrose 1-fructosyltransferase in fructan and glucose metabolism pathways showed the most significant association with wheat drought tolerance. The characterization of ABA early-responsive genes in this study provides valuable information for exploring the molecular functions of the regulatory genes and will assist in wheat breeding.展开更多
基金financially supported by the National Natural Science Foundation of China (32230079, 32001492, 31871615, and31901547)Natural Science Foundation of Henan Province(222301420102)。
文摘To break the narrow diversity bottleneck of the wheat D genome, a set of Aegilops tauschii-wheat introgression(A-WI) lines was developed by crossing Ae. tauschii accession T015 with common wheat elite cultivar Zhoumai 18(Zhou18). A high-density genetic map was constructed based on Single Nucleotide Polymorphism(SNP) markers and 15 yield-related traits were evaluated in 11 environments for detecting quantitative trait loci(QTL). A total of 27 environmentally stable QTL were identified in at least five environments, 20 of which were derived from Ae. tauschii T015, explaining up to 24.27% of the phenotypic variations. The major QTL for kernel length(KL), QKl-2D.5, was delimited to a physical interval of approximately 2.6 Mb harboring 52 candidate genes. Three Kompetitive Allele Specific PCR(KASP)markers were successfully developed based on nonsynonymous nucleotide mutations of candidate gene AetT093_2Dv1G100900.1 and showed that A-WI lines with the T015 haplotype had significantly longer KL than the Zhou18 haplotype across all 11 environments. Four primary valuable A-WIs with good trait performance and carrying yield-related QTL were selected for breeding improvement. The results will facilitate the efficient transfer of beneficial genes from Ae. tauschii into wheat cultivars to improve wheat yield and other traits.
基金supported by the Natural Science Foundation of China(No.39870547)the Educational Committee of Sichuan Province.
文摘An artificial amphiploid RSP (2n = 42, AABBDD) between tetraploid landrace Ailanmai (Triticum turgidum L., 2n= 28, AABB) and Aegllops tauschii (DD, 2n = 14) expressed high tolerance to preharvest sprouting which derived from Ae. tauschii. Tolerance to preharvest sprouting of RSP was examined by four ways in six varying periods after anthesis. The germination percentages of preharvest intact spikes were only 6.06% in its high peak period of germination. Its tolerance was mainly decided by the seed dormancy. It was showed that the tolerance to sprouting in ' RSP' derived from Ae. tauschii was inherited as a recessive trait which was controlled by one gene, located on chromosome 2D.
文摘Common or bread wheat ( Triticum aestivum L., AABBDD, 2n=42) originated ca. 8 000 years ago from hybridization of tetraploid wheat ( Triticum turgidum L., AABB, 2n=28) and diploid Aegilops tauschii Coss. (DD, 2n=14). An essential prerequisite for this evolutionary step is that the natural hybrids between tetraploid wheat and diploid Aegilops tauschii can produce relatively many filled seeds which germinated well. In this study, without special techniques, e.g. immature embryo culture, out of 22 Ae. tauschii accessions, the genotype AS60 produced relatively many filled seeds which germinated well. The seed germination percentages in the crosses of Ae. tauschii ×tetraploid wheat, tetraploid wheat× Ae. tauschii and Ae. tauschii ×common wheat were, respectively, 50.0%, 57.1% and 45.5%. It seems that Ae. tauschii accession AS60 has a unique genotype which facilitate hybrid seed development and viability, and which meets with the prerequisite for wheat evolutionary. Furthermore, the significance of this finding for common wheat improvement and evolution was discussed.
基金the National Natural Science Foundation of China (No 30700495)Education Department of Sichuan province (No 07ZZ025)Science and Technology Department of Sichuan province (No 08ZQ026-060)
文摘Fertile F1 hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F1 hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F1 hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.
基金financial supports by the National 973 Program of China (2014CB138100)the National Natural Science Foundation of China (31171553, 31471488 and 31200982)the National High-Tech R&D Program of China (2011AA100102)
文摘Seven important grain traits, including grain length(GL), grain width(GW), grain perimeter(GP), grain area(GA), grain length/width ratio(GLW), roundness(GR), and thousand-grain weight(TGW), were analyzed using a set of 139 simple sequence repeat(SSR) markers in 130 hexaploid wheat varieties and 193 Aegilops tauschii accessions worldwide. In total, 1 612 alleles in Ae. tauschii and 1 360 alleles in hexaploid wheat(Triticum aestivum L.) were detected throughout the D genome. 197 marker-trait associations in Ae. tauschii were identified with 58 different SSR loci in 3 environments, and the average phenotypic variation value(R2) ranged from 0.68 to 15.12%. In contrast, 208 marker-trait associations were identified in wheat with 66 different SSR markers in 4 environments and the average phenotypic R2 ranged from 0.90 to 19.92%. Further analysis indicated that there are 6 common SSR loci present in both Ae. tauschii and hexaploid wheat, which are significantly associated with the 5 investigated grain traits(i.e., GA, GP, GR, GL, and TGW) and in total, 16 alleles derived from the 6 aforementioned SSR loci were shared by Ae. tauschii and hexaploid wheat. These preliminary data suggest the existence of common alleles may explain the evolutionary process and the selection between Ae. tauschii and hexaploid wheat. Furthermore, the genetic differentiation of grain shape and thousand-grain weight were observed in the evolutionary developmental process from Ae. tauschii to hexaploid wheat.
基金supported by the International Science & Technology Cooperation Program of China (2015DFA30600)the National Natural Science Foundation of China (31301317)
文摘Aegilops tauschii Ais a wild relative of common wheat(Triticum aestivum) and acts as an important resource of elite genes including genes for resistance to biotic and abiotic stresses. To improve the cadmium(Cd) tolerance of wheat varieties using A. tauschii resources, we investigated the genetic variation of biomass-based Cd tolerance in 235 A. tauschii accessions treated with 0(control) and100 μmol L-1CdC l2(as Cd stress). Simultaneously, we performed a genomewide association study(GWAS) using a single-nucleotide polymorphism chip containing 7185 markers. Six markers were found to be significantly associated with Cd tolerance by a general linear model and a mixed linear model. These markers were close to several candidate/flanking genes associated with Cd tolerance according to results in public databases, including pdil5-1, Acc-1, DME-5A,TaA P2-D, TaA P2-B, Vrn-B1, and FtsH-like protein gene. The A. tauschii accessions were classified as high, moderate, and low Cd-tolerant according to a secondary index, the synthetic index(SI), in proportions of 9%, 57%, and 34%, respectively. By the average SI, accessions from Afghanistan,Turkey, Azerbaijan, and Iran showed relatively high Cd tolerance.
基金financially supported by the National Natural Science Foundation of China (grant numbers 31171553 and 31471488)the National Basic Research Program of China (2014CB138100)+2 种基金the National High Technology Research and Development Program of China (2011AA100102 and 2012AA101105)Shandong Seed Engineering Project (2015–2019)the Program of Introducing International Super Agricultural Science and Technology (948 program, 2013-S19)
文摘The rich genetic variation preserved in collections of Aegilops tauschii can be readily exploited to improve common wheat using synthetic hexaploid wheat lines. However,hybrid necrosis, which is characterized by progressive death of leaves or plants, has been observed in certain interspecific crosses between tetraploid wheat and Ae. tauschii. The aim of this study was to construct a fine genetic map of a gene(temporarily named Net Jing Y176)conferring hybrid necrosis in Ae. tauschii accession Jing Y176. A triploid F1 population derived from distant hybridization between Ae. tauschii and tetraploid wheat was used to map the gene with microsatellite markers. The newly developed markers Xsdau K539 and Xsdau K561 co-segregated with Net Jing Y176 on chromosome arm 2DS. The tightly linked markers developed in this study were used to genotype 91 Ae. tauschii accessions. The marker genotype analysis suggested that 49.45% of the Ae. tauschii accessions carry Net Jing Y176. Interestingly, hybrid necrosis genotypes tended to appear more commonly in Ae. tauschii ssp. tauschii than in Ae. tauschii ssp. strangulata.
基金supported by the National Key Research and Development Program of China (2016YFD0100102-3)the Recruitment Program of High-end Foreign Experts of State Administration of Foreign Experts Affairs (GDT20163200028)the Independent Innovation of Agricultural Science and Technology of Jiangsu Province [CX(15)1001]
文摘Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome of common wheat(Triticum aestivum), of which Ae. tauschii is the source. Since the 1980 s,there have been numerous efforts to harness a much larger share of Ae. tauschii^ extensive and highly variable gene pool for wheat improvement. Those efforts have followed two distinct approaches: production of amphiploids, known as "synthetic hexaploids," between T. turgidum and Ae. tauschii,and direct hybridization between 丁. aestiuum and Ae. tauschii;both approaches then involve backcrossing to 丁. aestiuum. Both synthetic hexaploid production and direct hybridization have led to the transfer of numerous new genes into common wheat that confer improvements in many traits. This work has led to release of improved cultivars in China, the United States, and many other countries. Each approach to D-genome improvement has advantages and disadvantages. For example, production of synthetic hexaploids can incorporate useful germplasm from both T. turgidum and Ae.tauschii, thereby enhancing the A, B, and D genomes; on the other hand, direct hybridization rapidly restores the recurrent parent's A and B genomes and avoids incorporation of genes with adverse effects on threshability, hybrid necrosis, vernalization response, milling and baking quality, and other traits, which are often transferred when T. turgidum is used as a parent. Choice of method will depend in part on the type of wheat being developed and the target environment. However, more extensive use of the so-far underexploited direct hybridization approach is especially warranted.
基金financially supported by the National HighTech R&D Program of China (2011AA100104)
文摘An optimum heading date is essential for sustainable crop productivity and ensuring high yields. In the present study, F2:3 populations were generated by crossing an early-heading accession, Y2280, with a late-heading accession, Y2282. The heading dates of the F2 and F3 populations were investigated in a field study. Using publicly available simple sequence repeat (SSR) markers, the early heading date gene HdAey2280 was mapped onto Aegilops tauschfi chromosome 7DS between the flanking markers wmc438 and barc126 at distances of 15 and 9.1 cM, respectively. Further analysis indicated that HdAey2280 is a novel heading date gene. New SSR markers were developed based on the Ae. tauschfi draft genome sequence, resulting in four new markers that were linked to the heading date gene HdAey2280. The closest distance of these markers was 1.9 cM away from the gene. The results collected in this study will serve as a framework for map-based cloning and marker-assisted selection in wheat breeding programs in the future.
基金supported by the National BasicResearch Program(973 Program2009CB 118300),"100-Talent Program"of The Chinese Academy of Sciences,and by the Education Bureau and Science and Technology Bureau of Sichuan Province.
文摘The Q/q gene, also known as WAP2, is an important gene for wheat domestication and is a member of the AP2 (APETALA2) class of transcription factors. In the present study, we first isolated the WRAP2 allele (where the superscript "t" refers to the speciese source, in this case "tauschii") on chromosome 5D from Aegilops tauschii Coss., the D-genome donor species of common wheat. We found that WRAP2 and the AP2 gene from Arabidopsis share a central core of the AP2 polypeptide, a highly basic 10-amino acid domain, and an AASSGF box, although there are many differences in the 37-amino acid serine-rich acidic domain and the remaining regions. In addition, WRAP2 was highly homologous to the homoeologous loci on 5A and 5B of wheat at both the nucleotide and amino acid level. However, there were some variations that are probably related to gene function. In the first AP2 domain, the amino acids VYL on the 5D and 5A loci were replaced with LLR on 5B. In the 37-amino acid serine-rich acidic domain, WRAP2 on 5D had an extra amino acid insertion. There was also a variation at the 329 amino acid position, which is thought to be related to the appearance of free-threshing wheat. At this position, the amino acid is isoleucine on 5A for the Q allele and valine for the q allele, whereas the amino acid is leucine on 5D and 5B. Furthermore, a Stowaway miniature terminal inverted repeat element (MITE) insertion was present in the ninth intron of WAP2 on 5B of all common wheats and partial tetraploid Triticum turgidum wheats. These results provide new clues for studies into the evolutionary biology of WAP2 and the origin of common wheat.
文摘For the purpose of broadening the available genetic resources to improve wheat breeding and to elucidate wheat evolution, 16 accessions of Aegilops tauschii newly collected in North Caucasia named NCT accessions were characterized genetically based on morphology, chloroplast SSR variation and AFLP. Ae. tauschii is one of the most important wild wheat genetic resources because it is the progenitor of the D genome of hexaploid wheat. Since Caucasia is considered to be a center of diversity of both cultivated and wild wheat, a lot of studies have been conducted to evaluate the diversity of Caucasian genetic resources including Ae. tauschii. Such kind of analyses, however, focused on Transcaucasia but little attention has been paid to North Caucasia because of the lack of available genetic resources. Based on the molecular analyses in this study, the 16 NCT accessions were generally divided into two groups although morphologically those are classified into the same subspecies. The grouping also represented geographical distribution, that is, the northern part group and Derbent group. This division is consistent with the two major genepools in Ae. tauschii reported in previous studies. The northern part and Derbent groups correspond to Eurasian wide genepool (called Tauschii genepool) and Caucasia and Caspian coast limited genepool (Strangulata genepool), respectively. Regarding to chloroplast, all the 16 accessions were genotyped as HG7, the most major haplogroup of the species. Although all the 16 NCT accessions were categorized into ssp. tauschii morphologically, accessions of Derbent group showed a tendency to have larger spikelets. Among them, especially NCT3 had the quite large size of spikelets and grains that are at almost the largest level in ssp. tauschii. The results of this study filled the missing information of Ae. tauschii and will be helpful for future utilization.
基金supported by the National Key Research and Development Program of China(2016YFD0101001)the Agricultural Science and Technology Innovation Program of CAAS。
文摘The diploid wild goat grass Aegilops tauschii(Ae. tauschii, 2 n = 14;DD), as the D-sub genome of common wheat, provides rich germplasm resources for many aspects of wheat breeding. Abscisic acid(ABA) is an essential phytohormone that plays a pivotal role in plant adaptation to abiotic stresses. However,the gene regulation network of Ae. tauschii in response to ABA stress remains unclear. Here, we conducted a time-course strand-specific RNA-sequencing study to globally profile the transcriptome that responded to ABA treatment in Ae. tauschii. We identified 4818 differentially expressed transcription units/genes with time-point-specific induction/repression patterns. Using functional annotation, one-to-one ortholog and comparative transcriptome profiling analyses, we identified 319 ABA-responsive Ae. tauschii orthologs that were also induced/repressed under ABA treatment in hexaploid wheat. On the quantitative trait loci(QTL) used in wheat marker-assisted breeding, we found that the ABA-responsive expression patterns of eight Ae. tauschii orthologs were associated with drought stress tolerance, flowering process and/or grain quality. Of them, the ABA-responsive gene encoding sucrose:sucrose 1-fructosyltransferase in fructan and glucose metabolism pathways showed the most significant association with wheat drought tolerance. The characterization of ABA early-responsive genes in this study provides valuable information for exploring the molecular functions of the regulatory genes and will assist in wheat breeding.