A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequenc...A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.展开更多
x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit...x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit for real-time encoding application of high resolution video. This paper analyses the character of aerial video and then opti-mizes the inter-frame mode decision and motion estimation in x264 codec according to its character by reducing a lot of unnecessary computation. In the result, about 19% computation and encoding time is reduced with total bits and PSNR decreasing lightly.展开更多
In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal...In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object's appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
为了实时识别快速路交织区拥堵瓶颈的形成及其诱发因素,基于无人机航拍视频构建车辆轨迹数据,提出一种融合交通流不稳定性分析的交织区拥堵识别方法。识别方法由车辆轨迹提取、扰动感知模型和拥堵风险指数构建3个阶段构成。首先,通过YOL...为了实时识别快速路交织区拥堵瓶颈的形成及其诱发因素,基于无人机航拍视频构建车辆轨迹数据,提出一种融合交通流不稳定性分析的交织区拥堵识别方法。识别方法由车辆轨迹提取、扰动感知模型和拥堵风险指数构建3个阶段构成。首先,通过YOLOv4(You Only Look Once,Version 4)网络训练航拍小目标权重检测俯拍车辆,关联外观与运动特征以跟踪车辆轨迹,从而提取无人机航拍视频中的精细车辆轨迹。然后,通过提取车辆微观速度、变道、冲突信息建立车速扰动和变道交织扰动感知模型。最后,采用熵值法结合扰动信息与平均车速构建归一化的拥堵风险指数,根据交织流的拥堵风险指数识别拥堵。本文采集广州大桥数据进行案例分析与测试验证。研究结果表明:学习了小目标特征的网络在航拍场景测试的误检率和少检率均低于5%,所提取的车辆轨迹连续稳定;在交织区拥堵识别评价中,本文方法的F1值达到97.85%,明显优于基本参数识别方法,在各路段中具有较高的识别准确度和算法鲁棒性;相比平均速度指标,所提出的拥堵风险指数能够更精细灵敏地反映短时和局部的拥堵,并能够从平均车速、个体车速差异和变道交织3个维度中识别多种因素引起的交织区交通瓶颈。研究结果可为城市重点路段交通诱导与优化提供技术基础。展开更多
文摘A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.
文摘x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit for real-time encoding application of high resolution video. This paper analyses the character of aerial video and then opti-mizes the inter-frame mode decision and motion estimation in x264 codec according to its character by reducing a lot of unnecessary computation. In the result, about 19% computation and encoding time is reduced with total bits and PSNR decreasing lightly.
基金co-supported by the National Natural Science Foundation of China (Nos.61005028,61175032,and 61101222)
文摘In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object's appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.
文摘为了实时识别快速路交织区拥堵瓶颈的形成及其诱发因素,基于无人机航拍视频构建车辆轨迹数据,提出一种融合交通流不稳定性分析的交织区拥堵识别方法。识别方法由车辆轨迹提取、扰动感知模型和拥堵风险指数构建3个阶段构成。首先,通过YOLOv4(You Only Look Once,Version 4)网络训练航拍小目标权重检测俯拍车辆,关联外观与运动特征以跟踪车辆轨迹,从而提取无人机航拍视频中的精细车辆轨迹。然后,通过提取车辆微观速度、变道、冲突信息建立车速扰动和变道交织扰动感知模型。最后,采用熵值法结合扰动信息与平均车速构建归一化的拥堵风险指数,根据交织流的拥堵风险指数识别拥堵。本文采集广州大桥数据进行案例分析与测试验证。研究结果表明:学习了小目标特征的网络在航拍场景测试的误检率和少检率均低于5%,所提取的车辆轨迹连续稳定;在交织区拥堵识别评价中,本文方法的F1值达到97.85%,明显优于基本参数识别方法,在各路段中具有较高的识别准确度和算法鲁棒性;相比平均速度指标,所提出的拥堵风险指数能够更精细灵敏地反映短时和局部的拥堵,并能够从平均车速、个体车速差异和变道交织3个维度中识别多种因素引起的交织区交通瓶颈。研究结果可为城市重点路段交通诱导与优化提供技术基础。