期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
High-resolution remote sensing image-based extensive deformation-induced landslide displacement field monitoring method 被引量:16
1
作者 Shanjun Liu Han Wang +1 位作者 Jianwei Huang Lixin Wu 《International Journal of Coal Science & Technology》 EI 2015年第3期170-177,共8页
Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring me... Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures. 展开更多
关键词 Landslide monitoring high-resolution remote sensing SIFT algorithm Deformation field
下载PDF
High-resolution Remote Sensing Image Segmentation Using Minimum Spanning Tree Tessellation and RHMRF-FCM Algorithm 被引量:10
2
作者 Wenjie LIN Yu LI Quanhua ZHAO 《Journal of Geodesy and Geoinformation Science》 2020年第1期52-63,共12页
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i... It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively. 展开更多
关键词 STATIC minimum SPANNING TREE TESSELLATION shape parameter RHMRF FCM algorithm high-resolution remote sensing image segmentation
下载PDF
Application of High-Resolution Remote Sensing Technology in Quantitative Study on Coseismic Surface Rupture Zones: An Example of the 2008 M_w7.2 Yutian Earthquake
3
作者 SHAN Xinjian HAN Nana +3 位作者 SONG Xiaogang GONG Wenyu QU Chunyan ZHANG Yingfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2468-2469,共2页
Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Ba... Objective Nowadays, high-resolution remote sensing technology has brought new changes to surveys of earthquakes, and the quantitative study of seismic faults based on this technology has become a trend in the world(Barzegari et al., 2017). An Mw 7.2 earthquake occurred in Yutian of Xinjiang on the western end of the Altyn Tagh fault on March 21 st, 2008. It is difficult to access this depopulated zone because of the high altitude and only 1–2 months of snowmelt. This study utilized high-resolution 展开更多
关键词 DEM Application of high-resolution remote sensing Technology in Quantitative Study on Coseismic Surface Rupture Zones An Example of the 2008 M_w7.2 Yutian Earthquake
下载PDF
A Remote Sensing Image Semantic Segmentation Method by Combining Deformable Convolution with Conditional Random Fields 被引量:12
4
作者 Zongcheng ZUO Wen ZHANG Dongying ZHANG 《Journal of Geodesy and Geoinformation Science》 2020年第3期39-49,共11页
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a... Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset. 展开更多
关键词 high-resolution remote sensing image semantic segmentation deformable convolution network conditions random fields
下载PDF
Recognizing and monitoring infectious sources of schistosomiasis by developing deep learning models with high-resolution remote sensing images
5
作者 Jing-Bo Xue Shang Xia +5 位作者 Xin-Yi Wang Lu-Lu Huang Liang-Yu Huang Yu-Wan Hao Li-Juan Zhang Shi-Zhu Li 《Infectious Diseases of Poverty》 SCIE CSCD 2023年第1期24-35,共12页
Background China is progressing towards the goal of schistosomiasis elimination,but there are still some problems,such as difficult management of infection source and snail control.This study aimed to develop deep lea... Background China is progressing towards the goal of schistosomiasis elimination,but there are still some problems,such as difficult management of infection source and snail control.This study aimed to develop deep learning models with high-resolution remote sensing images for recognizing and monitoring livestock bovine,which is an intermediate source of Schistosoma japonicum infection,and to evaluate the effectiveness of the models for real-world application.Methods The dataset of livestock bovine’s spatial distribution was collected from the Chinese National Platform for Common Geospatial Information Services.The high-resolution remote sensing images were further divided into training data,test data,and validation data for model development.Two recognition models based on deep learning methods(ENVINet5 and Mask R-CNN)were developed with reference to the training datasets.The performance of the developed models was evaluated by the performance metrics of precision,recall,and F1-score.Results A total of 50 typical image areas were selected,1125 bovine objectives were labeled by the ENVINet5 model and 1277 bovine objectives were labeled by the Mask R-CNN model.For the ENVINet5 model,a total of 1598 records of bovine distribution were recognized.The model precision and recall were 81.9%and 80.2%,respectively.The F1 score was 0.81.For the Mask R-CNN mode,1679 records of bovine objectives were identified.The model precision and recall were 87.3%and 85.2%,respectively.The F1 score was 0.87.When applying the developed models to real-world schistosomiasis-endemic regions,there were 63 bovine objectives in the original image,53 records were extracted using the ENVINet5 model,and 57 records were extracted using the Mask R-CNN model.The successful recognition ratios were 84.1%and 90.5%for the respectively developed models.Conclusion The ENVINet5 model is very feasible when the bovine distribution is low in structure with few samples.The Mask R-CNN model has a good framework design and runs highly efficiently.The livestock recognition models developed using deep learning methods with high-resolution remote sensing images accurately recognize the spatial distribution of livestock,which could enable precise control of schistosomiasis. 展开更多
关键词 Deep learning high-resolution remote sensing Recognizing MONITORING Infectious source SCHISTOSOMIASIS
原文传递
RepDDNet:a fast and accurate deforestation detection model with high-resolution remote sensing image
6
作者 Zhipan Wang Zhongwu Wang +3 位作者 Dongmei Yan Zewen Mo Hua Zhang Qingling Zhang 《International Journal of Digital Earth》 SCIE EI 2023年第1期2013-2033,共21页
Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change informatio... Forest is the largest carbon reservoir and carbon absorber on earth.Thus,mapping forest cover change accurately is of great significance to achieving the global carbon neutrality goal.Accurate forest change information could be acquired by deep learning methods using high-resolution remote sensing images.However,deforestation detection based on deep learning on a large-scale region with high-resolution images required huge computational resources.Therefore,there was an urgent need for a fast and accurate deforestation detection model.In this study,we proposed an interesting but effective re-parameterization deforestation detection model,named RepDDNet.Unlike other existing models designed for deforestation detection,the main feature of RepDDNet was its decoupling feature,which means that it allowed the multi-branch structure in the training stages to be converted into a plain structure in the inference stage,thus the computation efficiency can be significantly improved in the inference stage while maintaining the accuracy unchanged.A large-scale experiment was carried out in Ankang city with 2-meter high-resolution remote sensing images(the total area of it was over 20,000 square kilometers),and the result indicated that the model computation efficiency could be improved by nearly 30%compared with the model without re-parameterization.Additionally,compared with other lightweight models,RepDDNet also displayed a trade-off between accuracy and computation efficiency. 展开更多
关键词 Carbon neutral deforestation detection high-resolution remote sensing image deep learning reparameterization
原文传递
China’s high-resolution optical remote sensing satellites and their mapping applications 被引量:20
7
作者 Deren Li Mi Wang Jie Jiang 《Geo-Spatial Information Science》 SCIE CSCD 2021年第1期85-94,I0011,共11页
Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the govern... Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China. 展开更多
关键词 high-resolution optical remote sensing satellite satellite constellation mapping mode global mapping
原文传递
Advances in urban information extraction from high-resolution remote sensing imagery 被引量:9
8
作者 Jianya GONG Chun LIU Xin HUANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第4期463-475,共13页
The study of urban area is one of the hottest research topics in the field of remote sensing. With the accumulation of high-resolution(HR) remote sensing data and emerging of new satellite sensors, HR observation of u... The study of urban area is one of the hottest research topics in the field of remote sensing. With the accumulation of high-resolution(HR) remote sensing data and emerging of new satellite sensors, HR observation of urban areas has become increasingly possible, which provides us with more elaborate urban information. However, the strong heterogeneity in the spectral and spatial domain of HR imagery brings great challenges to urban remote sensing. In recent years, numerous approaches were proposed to deal with HR image interpretation over complex urban scenes, including a series of features from low level to high level, as well as state-of-the-art methods depicting not only the urban extent, but also the intra-urban variations. In this paper, we aim to summarize the major advances in HR urban remote sensing from the aspects of feature representation and information extraction. Moreover, the future trends are discussed from the perspectives of methodology, urban structure and pattern characterization, big data challenge, and global mapping. 展开更多
关键词 high-resolution URBAN remote sensing Feature extraction LAND use/land COVER classification Change detection
原文传递
Monitoring of vegetation coverage based on high-resolution images 被引量:3
9
作者 Zhang Li Li Li-juan +1 位作者 Liang Li-qiao Li Jiu-yi 《Forestry Studies in China》 CAS 2007年第4期256-261,共6页
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin... Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage. 展开更多
关键词 vegetation coverage remote sensing measurement high-resolution image OBJECT-ORIENTATION
下载PDF
Monitoring the green evolution of vernacular buildings based on deep learning and multi-temporal remote sensing images
10
作者 Baohua Wen Fan Peng +4 位作者 Qingxin Yang Ting Lu Beifang Bai Shihai Wu Feng Xu 《Building Simulation》 SCIE EI CSCD 2023年第2期151-168,共18页
The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolut... The increasingly mature computer vision(CV)technology represented by convolutional neural networks(CNN)and available high-resolution remote sensing images(HR-RSIs)provide opportunities to accurately measure the evolution of natural and artificial environments on Earth at a large scale.Based on the advanced CNN method high-resolution net(HRNet)and multi-temporal HR-RSIs,a framework is proposed for monitoring a green evolution of courtyard buildings characterized by their courtyards being roofed(CBR).The proposed framework consists of an expert module focusing on scenes analysis,a CV module for automatic detection,an evaluation module containing thresholds,and an output module for data analysis.Based on this,the changes in the adoption of different CBR technologies(CBRTs),including light-translucent CBRTs(LT-CBRTs)and non-lighttranslucent CBRTs(NLT-CBRTs),in 24 villages in southern Hebei were identified from 2007 to 2021.The evolution of CBRTs was featured as an inverse S-curve,and differences were found in their evolution stage,adoption ratio,and development speed for different villages.LT-CBRTs are the dominant type but are being replaced and surpassed by NLT-CBRTs in some villages,characterizing different preferences for the technology type of villages.The proposed research framework provides a reference for the evolution monitoring of vernacular buildings,and the identified evolution laws enable to trace and predict the adoption of different CBRTs in a particular village.This work lays a foundation for future exploration of the occurrence and development mechanism of the CBR phenomenon and provides an important reference for the optimization and promotion of CBRTs. 展开更多
关键词 courtyard buildings EVOLUTION deep learning high-resolution network remote sensing images
原文传递
A NEW METHOD FOR IMPROVING THE ABILITY OF ATMOSPHERIC INFRARED REMOTE SENSING FROM THE GROUND
11
作者 王英 徐寄遥 《Chinese Science Bulletin》 SCIE EI CAS 1991年第16期1350-1354,共5页
Research of the inversion method of atmospheric parameter is a very important aspect for extracting more information from measured data. Some authors have done a lot of re- searches in this field. They mainly searched... Research of the inversion method of atmospheric parameter is a very important aspect for extracting more information from measured data. Some authors have done a lot of re- searches in this field. They mainly searched for the way to obtain atmospheric parameter characteristics effectively from the measured information. Although Rodgerst pointed out that the statistical method using some a priori information could greatly improve the 展开更多
关键词 ATMOSPHERIC remote sensing high-resolution solar SPECTRUM spectral RESOLUTION enhancement.
原文传递
Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method
12
作者 Jintian Cui Xin Zhang +1 位作者 Weisheng Wang Lei Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第1期178-190,共13页
Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas ... Remote sensing is an important technical means to investigate land resources.Optical imagery has been widely used in crop classification and can show changes in moisture and chlorophyll content in crop leaves,whereas synthetic aperture radar(SAR)imagery is sensitive to changes in growth states and morphological structures.Crop-type mapping with a single type of imagery sometimes has unsatisfactory precision,so providing precise spatiotemporal information on crop type at a local scale for agricultural applications is difficult.To explore the abilities of combining optical and SAR images and to solve the problem of inaccurate spatial information for land parcels,a new method is proposed in this paper to improve crop-type identification accuracy.Multifeatures were derived from the full polarimetric SAR data(GaoFen-3)and a high-resolution optical image(GaoFen-2),and the farmland parcels used as the basic for object-oriented classification were obtained from the GaoFen-2 image using optimal scale segmentation.A novel feature subset selection method based on within-class aggregation and between-class scatter(WA-BS)is proposed to extract the optimal feature subset.Finally,crop-type mapping was produced by a support vector machine(SVM)classifier.The results showed that the proposed method achieved good classification results with an overall accuracy of 89.50%,which is better than the crop classification results derived from SAR-based segmentation.Compared with the ReliefF,mRMR and LeastC feature selection algorithms,the WA-BS algorithm can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained optimal feature subset.This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns can be improved by the combination of optical and SAR remote sensing images. 展开更多
关键词 crop-type mapping synthetic aperture radar(SAR) high-resolution remote sensing image segmentation feature subset selection object-oriented classification
原文传递
Current issues in high-resolution earth observation technology 被引量:20
13
作者 LI DeRen TONG QingXi +2 位作者 LI RongXing GONG JianYa ZHANG LiangPei 《Science China Earth Sciences》 SCIE EI CAS 2012年第7期1043-1051,共9页
This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth obser... This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service. 展开更多
关键词 high-resolution earth observation sensor networks precision processing of remote sensing images automatic interpretation of remote sensing images focus services for spatial information
原文传递
Comparison of satellite-estimated and model-forecasted rainfall data during a deadly debris-flow event in Zhouqu, Northwest China 被引量:9
14
作者 WANG Jun WANG Hui-Jun HONG Yang 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第2期139-145,共7页
The data of several rainfall products, including those estimated from satellite measurements and those forecasted via numerical weather modeling, for a severe debris-flow event in Zhouqu, Northwest China, are compared... The data of several rainfall products, including those estimated from satellite measurements and those forecasted via numerical weather modeling, for a severe debris-flow event in Zhouqu, Northwest China, are compared and analyzed in this paper. The satellite products, including CPC MORPHing technique(CMORPH), TMPA-RT, and PERSIANN are all near-real-time retrieved with high temporal and spatial resolutions. The numerical weather model used in this paper for precipitation forecasting is WRF. The results show that all three satellite products can basically reproduce the rainfall pattern, distribution, timing, scale, and extreme values of the event, compared with gauge data. Their temporal and spatial correlation coefficients with gauge data are as high as about 0.6, which is statistically significant at 0.01 level. The performance of the forecasted results modeled with different spatial resolutions are not as good as the satellite-estimated results, although their correlation coefficients are still statistically significant at 0.05 level. From the total rainfall and extreme value time series for the domain, it is clear that, from the grid-to-grid perspective, the passive microwave-based CMORPH and TRMM products are more accurate than the infrared-based PERSIANN, while PERSIANN performs very well from the general point of view, especially when considering the whole domain or the whole convective precipitation system. The forecasted data — especially the highest resolution model domain data — are able to represent the total or mean precipitation very well in the research domain, while for extreme values the errors are large. This study suggests that satellite-retrieved and model-forecasted rainfall data are a useful complement to gauge data, especially for areas without gauge stations and areas not covered by weather radars. 展开更多
关键词 RAINFALL remote sensing numerical weather model Zhouqu debris-flow event high-resolution data
下载PDF
Aquaculture area extraction and vulnerability assessment in Sanduao based on richer convolutional features network model 被引量:4
15
作者 LIU Yueming YANG Xiaomei +3 位作者 WANG Zhihua LU Chen LI Zhi YANG Fengshuo 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1941-1954,共14页
Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area... Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts. 展开更多
关键词 AQUACULTURE area VULNERABILITY assessment Richer Convolutional Features(RCF)network model deep learning high-resolution remote sensing
下载PDF
Approximate Approaches to Geometric Corrections of High Resolution Satellite Imagery 被引量:3
16
作者 SHIWenzhong AhmedShaker 《Geo-Spatial Information Science》 2004年第1期24-30,共7页
The exploitation of different non-rigorous mathematical models as opposed to the satellite rigorous models is discussed for geometric corrections and topographic/thematic maps pro duction of high-resolution satellite ... The exploitation of different non-rigorous mathematical models as opposed to the satellite rigorous models is discussed for geometric corrections and topographic/thematic maps pro duction of high-resolution satellite imagery (HRSI). Furthermore, this paper fo cuses on the effects of the number of GCPs and the terrain elevation difference within the area covered by the images on the obtained ground points accuracy. Fr om the research, it is obviously found that non-rigorous orientation and triang ulation models can be used successfully in most cases for 2D rectification and 3 D ground points determination without a camera model or the satellite ephemeris data. In addition, the accuracy up to the sub-pixel level in plane and about on e pixel in elevation can be achieved with a modest number of GCPs. 展开更多
关键词 remote sensing RECTIFICATION POLYNOMIALS high-resolution
下载PDF
Overview of the key technologies for high-resolution satellite mapping 被引量:5
17
作者 Xinming Tang Junfeng Xie 《International Journal of Digital Earth》 SCIE EI 2012年第3期228-240,共13页
As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the m... As the important infrastructures for land mapping and resource monitoring,highresolution remote sensing satellites(HRSS)are urgently demanded for the development of China.In this article,the key technologies of the main HRSS are summarized,and these technologies include sensor design,attitude and orbit determination,geometric calibration,imaging model construction,and block adjustment,etc.,which involve the mapping accuracy of HRSS.Finally,the system design of the ZY-3 Satellite(China’s first civil stereoscopic surveying and mapping satellite,to be launched in 2012)is introduced,which mainly include satellite technical specifications and strategies design based on these key technologies research. 展开更多
关键词 high-resolution remote sensing satellite satellite technical specifications satellite surveying and mapping ZY-3 Satellite
原文传递
Evaluation of Three-dimensional Urban Expansion: A Case Study of Yangzhou City, Jiangsu Province, China 被引量:11
18
作者 QIN Jing FANG Chuanglin +2 位作者 WANG Yang LI Guangdong WANG Shaojian 《Chinese Geographical Science》 SCIE CSCD 2015年第2期224-236,共13页
With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focu... With rapid urban development in China in the last two decades, the three-dimensional(3D) characteristic has been the main feature of urban morphology. However, the vast majority of researches of urban growth have focused on the planar area(two-dimensional(2D)) expansion. Few studies have been conducted from a 3D perspective. In this paper, the 3D urban expansion of the Yangzhou City, Jiangsu Province, China from 2003 to 2012 was evaluated based on Geographical Information System(GIS) tools and high-resolution remote sensing images. Four indices, namely weighted average height of buildings, volume of buildings, 3D expansion intensity and 3D fractal dimension are used to quantify the 3D urban expansion. The weighted average height of buildings and the volume of buildings are used to illustrate the temporal change of the 3D urban morphology, while the other two indices are used to calculate the expansion intensity and the fractal dimension of the 3D urban morphology. The results show that the spatial distribution of the high-rise buildings in Yangzhou has significantly spread and the utilization of the 3D space of Yangzhou has become more efficient and intensive. The methods proposed in this paper laid a foundation for a wide range of study of 3D urban morphology changes. 展开更多
关键词 three-dimensional urban morphology high-resolution remote sensing image three-dimensional expansion three-dimen-sional fractal Yangzhou City China
下载PDF
Assessment and Modeling of Geo-Spatial Technology and Geo-Spatial Intelligence Support for Joint Military Operations
19
作者 Nigatu Bekele 《Journal of Geographic Information System》 2019年第1期97-110,共14页
World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technolog... World military force structure is dramatically changing as collectively;our armed forces undergo a major transition from unprofessional to the Objective Force (designed to capitalize on information-age based technologies and Human Interaction to Non-Human Interaction). Traditional “stovepipes” among services are being eliminated and replaced with integrated systems that allow joint forces (combined Army, Air Force and navy) to seamlessly execute required tasks. This study was undertaken in conjunction with Geospatial Technology (Shows Space and Time) and Geospatial Intelligence Analysis (Use Algorithm, Use AI Concepts, IMINT and GEOINT). In order to successfully support current and future Ethiopian military operations in war zones, geospatial technologies and geospatial intelligence must be integrated to accommodate force structure evolution and mission requirement directives. The intent of joint intelligence operations is to integrate Ground, Air and Navy Forces at war zone and also give COP (“common operational picture”) for Operational and Tactical Commander Service and national intelligence capabilities into a unified effort that surpasses any single organizational effort and provides the most accurate and timely intelligence to commanders. 展开更多
关键词 remote sensing GIS GPS UAVS high-resolution SATELLITE Image
下载PDF
Mapping urban building stocks for vulnerability assessment  preliminary results 被引量:1
20
作者 Keiko Saito Robin Spence 《International Journal of Digital Earth》 SCIE 2011年第S01期117-130,共14页
This paper discusses a methodology to collect building inventory data by combining image processing techniques,field work or tools such as Google Street View and applying statistical inferences.Following the methodolo... This paper discusses a methodology to collect building inventory data by combining image processing techniques,field work or tools such as Google Street View and applying statistical inferences.Following the methodology outlined in Marinescu(2002),a family of Gabor filters are first constructed,which are then applied to an optical high-resolution image.The output from the processed image is segmented using Self-Organising Maps.This paper examines the relationship between the segmented areas in the image and the building type distribution within each segmented area,by deriving the distribution from field data.The relationship between the average number of buildings in these cells against the number of grid cells allocated to each segmentation cluster is also investigated.Finally,using these results,the overall building inventory distribution for the whole of the case study site of Pylos is presented. 展开更多
关键词 building inventory data collection remote sensing high-resolution optical satellite images Gabor filters Self-Organising Maps field data
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部