Infrared(IR)spectral energy distribution(SED)is the major tracer of protoplanetary disks.It was recently proposed to use the near-to-mid IR(or K-24)SED slopeαdefined between 2 and 24μm as a potential quantitative tr...Infrared(IR)spectral energy distribution(SED)is the major tracer of protoplanetary disks.It was recently proposed to use the near-to-mid IR(or K-24)SED slopeαdefined between 2 and 24μm as a potential quantitative tracer of disk age.We critically examine the viability of this idea and confront it with additional statistics of IR luminosities and SED shapes.We point out that,because the statistical properties of most of the complicated physical factors involved in disk evolution are still poorly understood in a quantitative sense,the only viable way is to assume them to be random so that an idealized“average disk”can be defined,which allows theαhistogram to trace its age.We confirm that the statistics of the zeroth order(luminosity),first order(slopeα),and second order characteristics(concavity)of the observed K-24 SEDs indeed carry useful information upon the evolutionary processes of the“average disk”.We also stress that intrinsic diversities in K-24 SED shapes and luminosities are always large at the level of individual stars so that the application of the evolutionary path of the“average disk”to individual stars must be done with care.The data of most curves in plots are provided on GitHub(Disk-age package https://github.com/starage/disk-age/).展开更多
The disk around MWC 480 has shown multiple substructures in both dust and gas observations,possibly suggesting ongoing planet formation in situ.In this paper,we explore the gas kinematics of the MWC 480 disk by analyz...The disk around MWC 480 has shown multiple substructures in both dust and gas observations,possibly suggesting ongoing planet formation in situ.In this paper,we explore the gas kinematics of the MWC 480 disk by analyzing the archival Atacama Large Millimeter/submillimeter Array observations of^(12)CO(J=2-1),^(13)CO(J=2-1),and C^(18)O(J=2-1).By modeling the line-of-sight velocities,inferred from the Doppler shifts of the emission lines,we are able to decompose the three-dimensional(3D)velocity field of the disk into rotational,radial,and vertical components.Further analysis reveals the presence of large-scale gas flows in the(r,z)plane.Notably,we identify potential meridional flows across various heights as traced by all three CO isotopologues in the 80–120 au region,possibly associated with ongoing planet formation activities in this region.Moreover,we find upward flows near 200 au for all three CO isotopologues,which may point to the presence of disk winds.展开更多
Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by adva...Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role.展开更多
In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the bas...In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.展开更多
Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions ...Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.展开更多
The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting...The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.展开更多
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Ch...Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.展开更多
Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve...Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.展开更多
The dynamic characteristics of a liquid thin film lubricated head disk system are analyzed. The shear thinning effect is taken into account by introducing modification coefficients into the lubricant rheological mode...The dynamic characteristics of a liquid thin film lubricated head disk system are analyzed. The shear thinning effect is taken into account by introducing modification coefficients into the lubricant rheological model. The perturbation theory is employed to set up the dynamic pressure equation. The Reynolds equation and dynamic pressure equations are solved by finite difference method. The results obtained by the difference methods agree well with that calculated by the close solutions. IBM3370 slider is employed as a physical model. The slider of the system can keep flying at 20 nm height, which promises a potential application on high density recording device.展开更多
详细介绍了利用 Disk Manager2000对新硬盘进行安装及安装中盘符交错的问题。安装后如何对硬盘进行维护、分区等。其中介绍了重新分区、正确定位光驱盘符、不同盘之间的文件拷贝,以及怎样创建 For Dos 的启动盘。同时介绍了硬盘检测工具...详细介绍了利用 Disk Manager2000对新硬盘进行安装及安装中盘符交错的问题。安装后如何对硬盘进行维护、分区等。其中介绍了重新分区、正确定位光驱盘符、不同盘之间的文件拷贝,以及怎样创建 For Dos 的启动盘。同时介绍了硬盘检测工具 Run SmartedFender 使用方法。展开更多
基金supported by the Natural Science Foundation of Yunnan Province(No.202201 BC070003)supported by the ANID FONDECYT Postdoctoral program No.3220029+2 种基金support by ANID,—Millennium Science Initiative Program—NCN19_171sponsored(in part)by the Chinese Academy of Sciences(CAS)the CAS South America Center for Astronomy(CASSACA)in Santiago,Chile.
文摘Infrared(IR)spectral energy distribution(SED)is the major tracer of protoplanetary disks.It was recently proposed to use the near-to-mid IR(or K-24)SED slopeαdefined between 2 and 24μm as a potential quantitative tracer of disk age.We critically examine the viability of this idea and confront it with additional statistics of IR luminosities and SED shapes.We point out that,because the statistical properties of most of the complicated physical factors involved in disk evolution are still poorly understood in a quantitative sense,the only viable way is to assume them to be random so that an idealized“average disk”can be defined,which allows theαhistogram to trace its age.We confirm that the statistics of the zeroth order(luminosity),first order(slopeα),and second order characteristics(concavity)of the observed K-24 SEDs indeed carry useful information upon the evolutionary processes of the“average disk”.We also stress that intrinsic diversities in K-24 SED shapes and luminosities are always large at the level of individual stars so that the application of the evolutionary path of the“average disk”to individual stars must be done with care.The data of most curves in plots are provided on GitHub(Disk-age package https://github.com/starage/disk-age/).
基金supported by the National Key Research and Development Program of China grant No.2021YFC2203001National Natural Science Foundation of China(NSFC,Grant Nos.12322301 and 12275021)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences,grant No.XDB2300000the Interdiscipline Research Funds of Beijing Normal University。
文摘The disk around MWC 480 has shown multiple substructures in both dust and gas observations,possibly suggesting ongoing planet formation in situ.In this paper,we explore the gas kinematics of the MWC 480 disk by analyzing the archival Atacama Large Millimeter/submillimeter Array observations of^(12)CO(J=2-1),^(13)CO(J=2-1),and C^(18)O(J=2-1).By modeling the line-of-sight velocities,inferred from the Doppler shifts of the emission lines,we are able to decompose the three-dimensional(3D)velocity field of the disk into rotational,radial,and vertical components.Further analysis reveals the presence of large-scale gas flows in the(r,z)plane.Notably,we identify potential meridional flows across various heights as traced by all three CO isotopologues in the 80–120 au region,possibly associated with ongoing planet formation activities in this region.Moreover,we find upward flows near 200 au for all three CO isotopologues,which may point to the presence of disk winds.
基金supported by the National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618,202203021212134)。
文摘Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role.
文摘In this study,we examine the effects of various shapes of nanoparticles in a steady flow of hybrid nanofluids between two stretchable rotating disks.The steady flow of hybrid nanofluids with transformer oil as the base fluid and Fe_(3)O_(4)+TiO_(2)as the hybrid nanofluid is considered.Several shapes of Fe_(3)O_(4)+TiO_(2)hybrid nanofluids,including sphere,brick,blade,cylinder,and platelet,are studied.Every shape exists in the same volume of a nanoparticle.The leading equations(partial differential equations(PDEs))are transformed to the nonlinear ordinary differential equations(ODEs)with the help of similarity transformations.The system of equations takes the form of ODEs depending on the boundary conditions,whose solutions are computed numerically by the bvp4c MATLAB solver.The outputs are compared with the previous findings,and an intriguing pattern is discovered,such that the tangential velocity is increased for the rotation parameter,while it is decreased by the stretching values because of the lower disk.For the reaction rate parameter,the concentration boundary layer becomes shorter,and the activation energy component increases the rate at which mass transfers come to the higher disk but have the opposite effect on the bottom disk.The ranges of various parameters taken into account are Pr=6.2,Re=2,M=1.0,φ_(1)=φ_(2)=0.03,K=0.5,S=-0.1,Br=0.3,Sc=2.0,α_(1)=0.2,γ=0.1,E_(n)=2.0,and q=1.0,and the rotation factor K is within the range of 0 to 1.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12173013,12103062,12003045,and 11903012)the National Key Basic R&D Program of China via 2019YFA0405500+2 种基金supported by the Natural Science Foundation of Hebei Province under grant A2021205006 and A2019205166by the project of the Hebei provincial department of science and technology under grant number 226Z7604Gthe science research grants from the China Manned Space Project。
文摘Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.
文摘The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
基金Project (51175095) supported by the National Natural Science Foundation of ChinaProjects (10251009001000001,9151009001000020) supported by the Natural Science Foundation of Guangdong Province,ChinaProject (20104420110001) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Classification of plume and spatter images was studied to evaluate the welding stability. A high-speed camera was used to capture the instantaneous images of plume and spatters during high power disk laser welding. Characteristic parameters such as the area and number of spatters, the average grayscale of a spatter image, the entropy of a spatter grayscale image, the coordinate ratio of the plume centroid and the welding point, the polar coordinates of the plume centroid were defined and extracted. Karhunen-Loeve transform method was used to change the seven characteristics into three primary characteristics to reduce the dimensions. Also, K-nearest neighbor method was used to classify the plume and spatter images into two categories such as good and poor welding quality. The results show that plume and spatter have a close relationship with the welding stability, and two categories could be recognized effectively using K-nearest neighbor method based on Karhunen-Loeve transform.
文摘Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.
文摘The dynamic characteristics of a liquid thin film lubricated head disk system are analyzed. The shear thinning effect is taken into account by introducing modification coefficients into the lubricant rheological model. The perturbation theory is employed to set up the dynamic pressure equation. The Reynolds equation and dynamic pressure equations are solved by finite difference method. The results obtained by the difference methods agree well with that calculated by the close solutions. IBM3370 slider is employed as a physical model. The slider of the system can keep flying at 20 nm height, which promises a potential application on high density recording device.