期刊文献+
共找到164,735篇文章
< 1 2 250 >
每页显示 20 50 100
When Does Sora Show:The Beginning of TAO to Imaginative Intelligence and Scenarios Engineering 被引量:12
1
作者 Fei-Yue Wang Qinghai Miao +6 位作者 Lingxi Li Qinghua Ni Xuan Li Juanjuan Li Lili Fan Yonglin Tian Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期809-815,共7页
DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in... DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning. 展开更多
关键词 SOMETHING intelligence replace
下载PDF
The Journey/DAO/TAO of Embodied Intelligence: From Large Models to Foundation Intelligence and Parallel Intelligence 被引量:1
2
作者 Tianyu Shen Jinlin Sun +4 位作者 Shihan Kong Yutong Wang Juanjuan Li Xuan Li Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1313-1316,共4页
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos... THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5]. 展开更多
关键词 intelligence DAO TAO
下载PDF
Automation 5.0: The Key to Systems Intelligence and Industry 5.0 被引量:1
3
作者 Ljubo Vlacic Hailong Huang +10 位作者 Mariagrazia Dotoli Yutong Wang Petros A.Ioannou Lili Fan Xingxia Wang Raffaele Carli Chen Lv Lingxi Li Xiaoxiang Na Qing-Long Han Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1723-1727,共5页
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f... AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024. 展开更多
关键词 AUTOMATION MACHINERY intelligence
下载PDF
Toward a Learnable Climate Model in the Artificial Intelligence Era 被引量:1
4
作者 Gang HUANG Ya WANG +3 位作者 Yoo-Geun HAM Bin MU Weichen TAO Chaoyang XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1281-1288,共8页
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ... Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal. 展开更多
关键词 artificial intelligence deep learning learnable climate model
下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
5
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 Artificial intelligence Radiomics Feature extraction Feature selection Modeling INTERPRETABILITY Multimodalities Head and neck cancer
下载PDF
Exploration of Graduate Student Cultivation Mode of Landscape Architecture under the Background of“Artificial Intelligence+X” 被引量:1
6
作者 CAO Yangyang ZENG Junfeng 《Journal of Landscape Research》 2024年第1期67-69,76,共4页
Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper anal... Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics. 展开更多
关键词 Artificial intelligence+ Landscape architecture Graduate training model Professional talent
下载PDF
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
7
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
Explainable Artificial Intelligence(XAI)Model for Cancer Image Classification
8
作者 Amit Singhal Krishna Kant Agrawal +3 位作者 Angeles Quezada Adrian Rodriguez Aguiñaga Samantha Jiménez Satya Prakash Yadav 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期401-441,共41页
The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and ... The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment. 展开更多
关键词 Explainable artificial intelligence artificial intelligence XAI healthcare CANCER image classification
下载PDF
Advancements in Barrett's esophagus detection:The role of artificial intelligence and its implications
9
作者 Sara Massironi 《World Journal of Gastroenterology》 SCIE CAS 2024年第11期1494-1496,共3页
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili... Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings. 展开更多
关键词 Barrett's esophagus Artificial intelligence Endoscopic images Artificial intelligence model Early cancer detection ENDOSCOPY
下载PDF
Artificial intelligence in individualized retinal disease management
10
作者 Zi-Ran Zhang Jia-Jun Li Ke-Ran Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1519-1530,共12页
Owing to the rapid development of modern computer technologies,artificial intelligence(AI)has emerged as an essential instrument for intelligent analysis across a range of fields.AI has been proven to be highly effect... Owing to the rapid development of modern computer technologies,artificial intelligence(AI)has emerged as an essential instrument for intelligent analysis across a range of fields.AI has been proven to be highly effective in ophthalmology,where it is frequently used for identifying,diagnosing,and typing retinal diseases.An increasing number of researchers have begun to comprehensively map patients’retinal diseases using AI,which has made individualized clinical prediction and treatment possible.These include prognostic improvement,risk prediction,progression assessment,and interventional therapies for retinal diseases.Researchers have used a range of input data methods to increase the accuracy and dependability of the results,including the use of tabular,textual,or image-based input data.They also combined the analyses of multiple types of input data.To give ophthalmologists access to precise,individualized,and high-quality treatment strategies that will further optimize treatment outcomes,this review summarizes the latest findings in AI research related to the prediction and guidance of clinical diagnosis and treatment of retinal diseases. 展开更多
关键词 artificial intelligence artificial intelligence in ophthalmology retinal disease
下载PDF
A review of artificial intelligence applications in high-speed railway systems
11
作者 Xuehan Li Minghao Zhu +3 位作者 Boyang Zhang Xiaoxuan Wang Zha Liu Liang Han 《High-Speed Railway》 2024年第1期11-16,共6页
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e... In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions. 展开更多
关键词 High-speed railway Artificial intelligence intelligent distribution intelligent control intelligent scheduling
下载PDF
Intelligent Transformation: General Intelligence Theory
12
作者 Alexander Ngu Amaya Odilon Kosso 《International Journal of Intelligence Science》 2024年第3期59-70,共12页
This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the c... This paper aims to formalize a general definition of intelligence beyond human intelligence. We accomplish this by re-imagining the concept of equality as a fundamental abstraction for relation. We discover that the concept of equality = limits the sensitivity of our mathematics to abstract relationships. We propose a new relation principle that does not rely on the concept of equality but is consistent with existing mathematical abstractions. In essence, this paper proposes a conceptual framework for general interaction and argues that this framework is also an abstraction that satisfies the definition of Intelligence. Hence, we define intelligence as a formalization of generality, represented by the abstraction ∆∞Ο, where each symbol represents the concepts infinitesimal, infinite, and finite respectively. In essence, this paper proposes a General Language Model (GLM), where the abstraction ∆∞Ο represents the foundational relationship of the model. This relation is colloquially termed “The theory of everything”. 展开更多
关键词 intelligence GENERALIZATION ABSTRACTION TRANSFORMATION General Language Model General intelligence Theory Theory of Everything
下载PDF
Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in glaucoma from 2013 to 2022
13
作者 Chun Liu Lu-Yao Wang +2 位作者 Ke-Yu Zhu Chun-Meng Liu Jun-Guo Duan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1731-1742,共12页
AIM:To conduct a bibliometric analysis of research on artificial intelligence(AI)in the field of glaucoma to gain a comprehensive understanding of the current state of research and identify potential new directions fo... AIM:To conduct a bibliometric analysis of research on artificial intelligence(AI)in the field of glaucoma to gain a comprehensive understanding of the current state of research and identify potential new directions for future studies.METHODS:Relevant articles on the application of AI in the field of glaucoma from the Web of Science Core Collection were retrieved,covering the period from January 1,2013,to December 31,2022.In order to assess the contributions and co-occurrence relationships among different countries/regions,institutions,authors,and journals,CiteSpace and VOSviewer software were employed and the research hotspots and future trends within the field were identified.RESULTS:A total of 750 English articles published between 2013 and 2022 were collected,and the number of publications exhibited an overall increasing trend.The majority of the articles were from China,followed by the United States and India.National University of Singapore,Chinese Academy of Sciences,and Sun Yat-sen University made significant contributions to the published works.Weinreb RN and Fu HZ ranked first among authors and cited authors.American Journal of Ophthalmology is the most impactful academic journal in the field of AI application in glaucoma.The disciplinary scope of this field includes ophthalmology,computer science,mathematics,molecular biology,genetics,and other related disciplines.The clustering and identification of keyword nodes in the co-occurrence network reveal the evolving landscape of AI application in the field of glaucoma.Initially,the hot topics in this field were primarily“segmentation”,“classification”and“diagnosis”.However,in recent years,the focus has shifted to“deep learning”,“convolutional neural network”and“artificial intelligence”.CONCLUSION:With the rapid development of AI technology,scholars have shown increasing interest in its application in the field of glaucoma.Moreover,the application of AI in assisting treatment and predicting prognosis in glaucoma may become a future research hotspot.However,the reliability and interpretability of AI data remain pressing issues that require resolution. 展开更多
关键词 GLAUCOMA ar tificial intelligence BIBLIOMETRICS
下载PDF
Status of clinical applications of artificial intelligence in echocardiography
14
作者 MA Chunyan 《中国医学影像技术》 CSCD 北大核心 2024年第8期1121-1123,共3页
Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining ... Artificial intelligence(AI)technology has been increasingly used in medical field with its rapid developments.Echocardiography is one of the best imaging methods for clinical diagnosis of heart diseases,and combining with AI could further improve its diagnostic efficiency.Though the applications of AI in echocardiography remained at a relatively early stage,a variety of automated quantitative and analytical techniques were rapidly emerging and initially entered clinical practice.The status of clinical applications of AI in echocardiography were reviewed in this article. 展开更多
关键词 ECHOCARDIOGRAPHY artificial intelligence
下载PDF
Concept of Artificial Intelligence (AI) and Its Use in Orthopaedic Practice: Applications and Pitfalls: A Narrative Review
15
作者 Mir Sadat-Ali 《Open Journal of Orthopedics》 2024年第1期32-40,共9页
Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review... Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review is to assess and analyze the use of AI and its use in orthopedic practice, as well as its applications, limitations, and pitfalls. Methods: A review of all relevant databases such as EMBASE, Cochrane Database of Systematic Reviews, MEDLINE, Science Citation Index, Scopus, and Web of Science with keywords of AI, orthopedic surgery, applications, and drawbacks. All related articles on AI and orthopaedic practice were reviewed. A total of 3210 articles were included in the review. Results: The data from 351 studies were analyzed where in orthopedic surgery. AI is being used for diagnostic procedures, radiological diagnosis, models of clinical care, and utilization of hospital and bed resources. AI has also taken a chunk of share in assisted robotic orthopaedic surgery. Conclusions: AI has now become part of the orthopedic practice and will further increase its stake in the healthcare industry. Nonetheless, clinicians should remain aware of AI’s serious limitations and pitfalls and consider the drawbacks and errors in its use. 展开更多
关键词 Artificial intelligence Healthcare PITFALLS Drawbacks
下载PDF
Utilization of Artificial Intelligence-Enabled Technologies by Agripreneurs in Ondo State, Nigeria
16
作者 Oluwatoyin Joy Omole Oluwatosin O. Fasina 《Agricultural Sciences》 2024年第4期439-448,共10页
The research investigated the adoption of artificial intelligence (AI) technol-ogies among agricultural entrepreneurs in Ondo state, Nigeria. A purposive sample of 120 participants involved in agriculture was selected... The research investigated the adoption of artificial intelligence (AI) technol-ogies among agricultural entrepreneurs in Ondo state, Nigeria. A purposive sample of 120 participants involved in agriculture was selected for the study. Socioeconomic characteristics analysis revealed that the mean age of the re-spondents was 48.3 years. A majority (77%) of the respondents were male, and approximately 68% were married. Regarding education, 32.5% had completed secondary education, while 32.5% had tertiary education. The av-erage annual income was 1,166,800 naira, with a significant proportion (71.7%) identifying as Christians. The study found a significant association between respondents’ awareness levels and their adoption of AI-enabled technologies (χ<sup>2</sup> = 7.714, p = 0.005). Based on these findings, it is recom-mended that extension officers receive training in the latest agricultural technologies, including those enabled by AI. Furthermore, the study suggests the introduction of easily accessible and user-friendly AI technologies to farmers to enhance their productivity and income with minimal or no cost implications. 展开更多
关键词 Artificial intelligence Agripreneurs AWARENESS
下载PDF
The Emotional Intelligence and the Associated Factors among Nursing Students
17
作者 Ahmad Batran 《Open Journal of Nursing》 2024年第3期114-126,共13页
Introduction: Emotional intelligence, or the capacity to cope one’s emotions, makes it simpler to form good connections with others and do caring duties. Nursing students can enroll a health team in a helpful and ben... Introduction: Emotional intelligence, or the capacity to cope one’s emotions, makes it simpler to form good connections with others and do caring duties. Nursing students can enroll a health team in a helpful and beneficial way with the use of emotional intelligence. Nurses who can identify, control, and interpret both their own emotions and those of their patients provide better patient care. The purpose of this study was to assess the emotional intelligence and to investigate the relationship and differences between emotional intelligence and demographic characteristics of nursing students. Methods: A cross-sectional study was carried out on 381 nursing students. Data collection was completed by “Schutte Self Report Emotional Intelligence Test”. Data were analyzed with the Statistical Package for Social Science. An independent t test, ANOVA, and Pearson correlation, multiple linear regression were used. Results: The results revealed that the emotional intelligence mean was 143.1 ± 21.6 (ranging from 33 to 165), which is high. Also, the analysis revealed that most of the participants 348 (91.3%) had higher emotional intelligence level. This finding suggests that nursing students are emotionally intelligent and may be able to notice, analyze, control, manage, and harness emotion in an adaptive manner. Also, academic year of nursing students was a predictor of emotional intelligence. Furthermore, there was positive relationship between the age and emotional intelligence (p < 0.05). The students’ ability to use their EI increased as they rose through the nursing grades. Conclusion: This study confirmed that the emotional intelligence score of the nursing students was high. Also, academic year of nursing students was a predictor of emotional intelligence. In addition, a positive relationship was confirmed between the emotional intelligence and age of nursing students. . 展开更多
关键词 STUDENTS NURSING Emotional intelligence
下载PDF
A scoping review of methodologies for applying artificial intelligence to physical activity interventions
18
作者 Ruopeng An Jing Shen +1 位作者 Junjie Wang Yuyi Yang 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第3期428-441,共14页
Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(M... Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(ML),deep learning(DL),and reinforcement learning(RL)algorithms;and encourage the adoption of AI methodologies.Methods A scoping review was performed in PubMed,Web of Science,Cochrane Library,and EBSCO focusing on AI applications for promoting PA or predicting related behavioral or health outcomes.AI methodologies were summarized and categorized to identify synergies,patterns,and trends informing future research.Additionally,a concise primer on predominant AI methodologies within the realm of PA was provided to bolster understanding and broader application.Results The review included 24 studies that met the predetermined eligibility criteria.AI models were found effective in detecting significant patterns of PA behavior and associations between specific factors and intervention outcomes.Most studies comparing AI models to traditional statistical approaches reported higher prediction accuracy for AI models on test data.Comparisons of different AI models yielded mixed results,likely due to model performance being highly dependent on the dataset and task.An increasing trend of adopting state-of-the-art DL and RL models over standard ML was observed,addressing complex human–machine communication,behavior modification,and decision-making tasks.Six key areas for future AI adoption in PA interventions emerged:personalized PA interventions,real-time monitoring and adaptation,integration of multimodal data sources,evaluation of intervention effectiveness,expanding access to PA interventions,and predicting and preventing injuries.Conclusion The scoping review highlights the potential of AI methodologies for advancing PA interventions.As the field progresses,staying informed and exploring emerging AI-driven strategies is essential for achieving significant improvements in PA interventions and fostering overall well-being. 展开更多
关键词 Artificial intelligence INTERVENTION Machine learning Neural network Physical activity
下载PDF
Artificial Intelligence for Global Health: Difficulties and Challenges: A Narrative Review
19
作者 Nazia S. Sadat Maryam S. Shuttari Mir Sadat-Ali 《Open Journal of Epidemiology》 2024年第1期122-130,共9页
Global health (GH) aims to improve healthcare for all people on the planet and eradicate all avoidable diseases and deaths. The inception of Artificial Intelligence (AI) is innovating healthcare practices and improvin... Global health (GH) aims to improve healthcare for all people on the planet and eradicate all avoidable diseases and deaths. The inception of Artificial Intelligence (AI) is innovating healthcare practices and improving patient outcomes by shuffling enormous volumes of health data—from health records and clinical studies to genetic information analyzing it much faster than humans. AI also helps in the improvement of medical imaging and medical diagnosis. There is an increased optimism regarding the use of applications of AI locally but can these facets be translated globally in the advancement and delivery of healthcare with the help of AI. At present majority of AI developments and applications in health care provide to the needs of developed countries and there is little effort to develop programs which could help to improve healthcare delivery globally. We performed this narrative review to assess the difficulties and discrepancies in implementing AI in global health delivery and find ways to improve. 展开更多
关键词 Artificial intelligence Global Health IMPLEMENTATION PITFALLS
下载PDF
Use of artificial intelligence in the field of pain medicine
20
作者 Min Cheol Chang 《World Journal of Clinical Cases》 SCIE 2024年第2期236-239,共4页
In this editorial we comment on the article“Potential and limitations of ChatGPT and generative artificial intelligence in medial safety education”published in the recent issue of the World Journal of Clinical Cases... In this editorial we comment on the article“Potential and limitations of ChatGPT and generative artificial intelligence in medial safety education”published in the recent issue of the World Journal of Clinical Cases.This article described the usefulness of artificial intelligence(AI)in medial safety education.Herein,we focus specifically on the use of AI in the field of pain medicine.AI technology has emerged as a powerful tool,and is expected to play an important role in the healthcare sector and significantly contribute to pain medicine as further developments are made.AI may have several applications in pain medicine.First,AI can assist in selecting testing methods to identify causes of pain and improve diagnostic accuracy.Entry of a patient’s symptoms into the algorithm can prompt it to suggest necessary tests and possible diagnoses.Based on the latest medical information and recent research results,AI can support doctors in making accurate diagnoses and setting up an effective treatment plan.Second,AI assists in interpreting medical images.For neural and musculoskeletal disorders,imaging tests are of vital importance.AI can analyze a variety of imaging data,including that from radiography,computed tomography,and magnetic resonance imaging,to identify specific patterns,allowing quick and accurate image interpretation.Third,AI can predict the outcomes of pain treatments,contributing to setting up the optimal treatment plan.By predicting individual patient responses to treatment,AI algorithms can assist doctors in establishing a treatment plan tailored to each patient,further enhancing treatment effectiveness.For efficient utilization of AI in the pain medicine field,it is crucial to enhance the accuracy of AI decision-making by using more medical data,while issues related to the protection of patient personal information and responsibility for AI decisions will have to be addressed.In the future,AI technology is expected to be innovatively applied in the field of pain medicine.The advancement of AI is anticipated to have a positive impact on the entire medical field by providing patients with accurate and effective medical services. 展开更多
关键词 Artificial intelligence Pain medicine DIAGNOSIS PREDICTION IMAGE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部