Based on the measurement of one-dimensional (1D) optical path difference (OPD) of the supersonic turbulent bound- ary layer, an analytical form for the power spectrum of the two-dimensional (2D) OPD is obtained ...Based on the measurement of one-dimensional (1D) optical path difference (OPD) of the supersonic turbulent bound- ary layer, an analytical form for the power spectrum of the two-dimensional (2D) OPD is obtained with its structure function and under the locally homogeneous isotropic assumption. The universality of this spectrum is argued, and its validity is checked by the comparison with experimental result. The potential applications of this model in theoretical and numerical studies are emphasized. Another contribution of this work is around the application of correlation function to analyzing the statistics of OPD. Based on our results and other results published elsewhere, we show that the OPD is often not stationary, and one should be cautious about using this tool.展开更多
The optical performance of supersonic mixing layer is heavily deteriorated by the aero-optical aberration and dithering of coherent structures, but current measuring methods limit the spatiotemporal resolution in rele...The optical performance of supersonic mixing layer is heavily deteriorated by the aero-optical aberration and dithering of coherent structures, but current measuring methods limit the spatiotemporal resolution in relevant studies. A high resolution whole-field aero-optical aberration and dithering measuring method based on the Background Orient Schlieren (BOS) technique was studied. The systematic structure, sensitivity and resolution of BOS are analyzed in this paper. The aero-optical aberration and dithering of streamwise structures in supersonic mixing layers were quantificationally studied with BOS. The aberration field of spanwise structures revealed the ribbon-like aberration structures, which heavily restrict the optical performance of a mixing layer. The quantifications of aero-optical aberration and dithering are very important in studying aero-optical performance of supersonic mixing layer.展开更多
Aero-optical effects for starlight transmission in the high-speed flow field will reduce the accuracy of the star sensor on an aircraft.Numerical simulations for aero-optical effects usually require plenty of calculat...Aero-optical effects for starlight transmission in the high-speed flow field will reduce the accuracy of the star sensor on an aircraft.Numerical simulations for aero-optical effects usually require plenty of calculations,which cause difficulties when designing a celestial navigation system for a high-speed aircraft.In this study,an Aero-Optical Simulator For Starlight Transmission(AOSST)in the boundary layer is developed.It effectively reduces the computational burden compared to that of the widely used CFD simulation,and it achieves satisfactory accuracy.In this simulator,gas ellipsoids satisfying certain design rules are used to simulate coherent density structures in boundary layers.Design rules for the gas ellipsoids are found from published experimental and high-fidelity CFD simulation results.The generated wavefront distortion by AOSST is anchored with the scale law for aero-optical distortion in the boundary layer by determining some control parameters,which enables the simulator to output reliable results over a wide range of flight states.Four numerical examples are provided to verify the performance of AOSST.The results demonstrate that AOSST is able to simulate the directional dependence of aero-optical distortions in boundary layers,the variation trend of distorted wavefront shapes with Reynolds number,and the grayscale distribution on the disturbed star map.展开更多
In this paper, a new algorithm is proposed to remove the effects of aerodynamic optical thermal radiation from a single infrared image. In this method, the joint probability model of gradient distribution is introduce...In this paper, a new algorithm is proposed to remove the effects of aerodynamic optical thermal radiation from a single infrared image. In this method, the joint probability model of gradient distribution is introduced by studying the "global smoothing and local fluctuation" characteristics of the bias field. A prior L0 norm of dark channel is introduced to constrain the latent clear image. Finally, the split Bregman method is used to solve the optimization problem. The effectiveness of the proposed method is verified by a series of experiments, and the results are compared with the results of the existing methods for the correction of thermal radiation effects.展开更多
The optical rays that form the image of an object and propagate a supersonic flow over a vehicle are refracted by the density variations.A numerical analysis of the aero-optical characteristics of supersonic flow over...The optical rays that form the image of an object and propagate a supersonic flow over a vehicle are refracted by the density variations.A numerical analysis of the aero-optical characteristics of supersonic flow over blunt wedge with a cavity window is carried out.A hybrid method of Reynold averaged Navier-Stokes and direct simulation Monte Carlo(RANS/DSMC) is employed to simulate the flowfield.Refraction factor is introduced to evaluate the flowfield's aero-optical characteristic.The results show that mean flow's aero-optical effects are mainly caused by the shock wave,the expansion wave and the turbulent boundary layer.Fluctuation flow's aero-optical effects are mainly caused by the turbulent boundary layer and the shock wave induced by the cavity window.The aero-optical effects at the leading side of window are caused by the mean density variations,while the effects at the trailing side are caused by the density fluctuations.Different draft angles of the cavity window are investigated.The airborne optical devices of supersonic vehicle should be mounted in the middle of the cavity window with a large draft angle.展开更多
The infrared imaging windows of the hyper/supersonic optical dome are encountering severe aero-optical effects[AOEs],so a flow control device,the ramp vortex generator array[RVGA]is proposed based on the ramp vortex g...The infrared imaging windows of the hyper/supersonic optical dome are encountering severe aero-optical effects[AOEs],so a flow control device,the ramp vortex generator array[RVGA]is proposed based on the ramp vortex generator to inhibit the supersonic mixing layers’AOE,which is done by the nanotracer-based planar laser scattering technique and ray-tracing method.The experiments prove that under different pressure conditions,RVGA can reduce the mean and standard deviation of the root mean square of the optical path difference[OPDrms]and reduce the supersonic mixing layers’thickness and mixture a great deal.The AOE of the pressure-matched mixing layer is the weakest.Higher RVGA results in better optical performance.RVGA has the potential to be applied to supersonic film cooling to reduce aero-optical aberrations.展开更多
The existing methods for measuring aero-optical aberration suffer from several problems,such as low spatiotemporal resolution,sensitivity to environment,and integral effects.A new method for measuring aero-optical abe...The existing methods for measuring aero-optical aberration suffer from several problems,such as low spatiotemporal resolution,sensitivity to environment,and integral effects.A new method for measuring aero-optical aberration of supersonic flow is proposed.Based on the self-developed measuring method of supersonic density field,the wavefront aberration induced by a cross-section of supersonic flow field could be measured by ray-tracing.Compared with other methods,the present one has three significant innovations:(1) high spatiotemporal resolution.Its time resolution is 6 ns,and the spatial resolution can reach up to micrometers;(2) it can avoid the integral effects and study the wavefront aberration induced by the flow field of interest locally;(3) it can also avoid the influence from the test section wall boundary layers and environmental disturbances.The present method was applied to supersonic flow around an optical bow cap.The results of high spatiotemporal resolution reveal fine wavefront structures,and show that shock waves,expansion waves and turbulent boundary layers have different impacts on the wavefront aberration.展开更多
A collimated light beam will be refracted if it propagates through a flow-field with index-of-refraction variations,and its wavefront will be distorted.If we measure the deflection angle of the light beam,the gradient...A collimated light beam will be refracted if it propagates through a flow-field with index-of-refraction variations,and its wavefront will be distorted.If we measure the deflection angle of the light beam,the gradient of the wavefront can be obtained using the Malus law,and the wavefront aberration can be computed with a reconstruction algorithm.Two characteristics of background oriented schlieren(BOS) are conducive to wavefront aberration measurement:BOS can be used to measure the deflection angle of a light beam by measuring the displacement field between the reference image and the experiment image.Moreover,in a BOS system of Schlieren mode,only the ray perpendicular to the background image can be captured with a camera.This is helpful to measure wavefront aberrations that occur after a planar wavefront has passed through the flow-field.Based on these characteristics of BOS of Schlieren mode,a new wavefront measurement technique,which is called the BOS-based wavefront technique(BOS-WT),is proposed in this paper.It works by constructing the relationship between the displacement of the background image and the aero-optical wavefront gradient and uses the Southwell wavefront reconstruction algorithm.A BOS-WT system was assembled,and its temporal resolution was found to be 6 ns,and its temporal-correlation resolution reached 0.2 μs.A BOS-WT can measure the time-correlation transient wavefront quantitatively.It is simple and easy to operate.In this paper,we also present a study of the aero-optical performance of supersonic mixing layer based on our BOS-WT transient wavefronts at an interval of 5 μs.The results showed the wavefront was transient and distorted after it had passed through the mixing layer.Through the analysis of the data at the 5 μs interval,the temporal evolution of wavefront can be obtained.展开更多
针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦...针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦合效应,对导引头典型状态的流场进行了模拟,获得了流场的密度、温度、压力等参数和窗口的温度场参数。基于流场参数,利用HyFLOW气动光学传输效应计算功能,开展了红外光学传输成像计算;利用HyFLOW气动光学辐射效应计算模块,开展了流场和光学窗口的热辐射计算。计算结果表明,类THAAD导引头在30 km以上飞行时,流场和光学窗口基本不会影响目标信号的光学传输成像,但流场和窗口的热辐射效应会对导引头识别目标造成影响。不过随着飞行高度的升高,这种影响会减小。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61008037)the National Basic Research Program of China(Grant No.2009CB724100)
文摘Based on the measurement of one-dimensional (1D) optical path difference (OPD) of the supersonic turbulent bound- ary layer, an analytical form for the power spectrum of the two-dimensional (2D) OPD is obtained with its structure function and under the locally homogeneous isotropic assumption. The universality of this spectrum is argued, and its validity is checked by the comparison with experimental result. The potential applications of this model in theoretical and numerical studies are emphasized. Another contribution of this work is around the application of correlation function to analyzing the statistics of OPD. Based on our results and other results published elsewhere, we show that the OPD is often not stationary, and one should be cautious about using this tool.
基金Supported by the National Natural Science Foundation of China (Grant No.10672178)
文摘The optical performance of supersonic mixing layer is heavily deteriorated by the aero-optical aberration and dithering of coherent structures, but current measuring methods limit the spatiotemporal resolution in relevant studies. A high resolution whole-field aero-optical aberration and dithering measuring method based on the Background Orient Schlieren (BOS) technique was studied. The systematic structure, sensitivity and resolution of BOS are analyzed in this paper. The aero-optical aberration and dithering of streamwise structures in supersonic mixing layers were quantificationally studied with BOS. The aberration field of spanwise structures revealed the ribbon-like aberration structures, which heavily restrict the optical performance of a mixing layer. The quantifications of aero-optical aberration and dithering are very important in studying aero-optical performance of supersonic mixing layer.
基金supported by the National Defense PreResearch Foundation of China(No.JCKY2016601C005)the Science and Technology on Space Intelligent Control Laboratory of China(No.ZDSYS-2018-03)。
文摘Aero-optical effects for starlight transmission in the high-speed flow field will reduce the accuracy of the star sensor on an aircraft.Numerical simulations for aero-optical effects usually require plenty of calculations,which cause difficulties when designing a celestial navigation system for a high-speed aircraft.In this study,an Aero-Optical Simulator For Starlight Transmission(AOSST)in the boundary layer is developed.It effectively reduces the computational burden compared to that of the widely used CFD simulation,and it achieves satisfactory accuracy.In this simulator,gas ellipsoids satisfying certain design rules are used to simulate coherent density structures in boundary layers.Design rules for the gas ellipsoids are found from published experimental and high-fidelity CFD simulation results.The generated wavefront distortion by AOSST is anchored with the scale law for aero-optical distortion in the boundary layer by determining some control parameters,which enables the simulator to output reliable results over a wide range of flight states.Four numerical examples are provided to verify the performance of AOSST.The results demonstrate that AOSST is able to simulate the directional dependence of aero-optical distortions in boundary layers,the variation trend of distorted wavefront shapes with Reynolds number,and the grayscale distribution on the disturbed star map.
基金supported by the Key Project of National Natural Science Foundation of China(No.61433007)the National Natural Science Foundation of China(Nos.61671337 and 61701353)
文摘In this paper, a new algorithm is proposed to remove the effects of aerodynamic optical thermal radiation from a single infrared image. In this method, the joint probability model of gradient distribution is introduced by studying the "global smoothing and local fluctuation" characteristics of the bias field. A prior L0 norm of dark channel is introduced to constrain the latent clear image. Finally, the split Bregman method is used to solve the optimization problem. The effectiveness of the proposed method is verified by a series of experiments, and the results are compared with the results of the existing methods for the correction of thermal radiation effects.
文摘The optical rays that form the image of an object and propagate a supersonic flow over a vehicle are refracted by the density variations.A numerical analysis of the aero-optical characteristics of supersonic flow over blunt wedge with a cavity window is carried out.A hybrid method of Reynold averaged Navier-Stokes and direct simulation Monte Carlo(RANS/DSMC) is employed to simulate the flowfield.Refraction factor is introduced to evaluate the flowfield's aero-optical characteristic.The results show that mean flow's aero-optical effects are mainly caused by the shock wave,the expansion wave and the turbulent boundary layer.Fluctuation flow's aero-optical effects are mainly caused by the turbulent boundary layer and the shock wave induced by the cavity window.The aero-optical effects at the leading side of window are caused by the mean density variations,while the effects at the trailing side are caused by the density fluctuations.Different draft angles of the cavity window are investigated.The airborne optical devices of supersonic vehicle should be mounted in the middle of the cavity window with a large draft angle.
基金supported by the National Natural Science Foundation of China(No.12102463)the National Defense Basic Scientific Research Program of China(No.2022-JCJQJJ-1123)the Natural Science Foundation of Hunan Province(No.2021JJ40652)。
文摘The infrared imaging windows of the hyper/supersonic optical dome are encountering severe aero-optical effects[AOEs],so a flow control device,the ramp vortex generator array[RVGA]is proposed based on the ramp vortex generator to inhibit the supersonic mixing layers’AOE,which is done by the nanotracer-based planar laser scattering technique and ray-tracing method.The experiments prove that under different pressure conditions,RVGA can reduce the mean and standard deviation of the root mean square of the optical path difference[OPDrms]and reduce the supersonic mixing layers’thickness and mixture a great deal.The AOE of the pressure-matched mixing layer is the weakest.Higher RVGA results in better optical performance.RVGA has the potential to be applied to supersonic film cooling to reduce aero-optical aberrations.
基金supported by the National Natural Science Foundation of China (10672178, 10772168)National Basic Research Program of China (2009CB724100)
文摘The existing methods for measuring aero-optical aberration suffer from several problems,such as low spatiotemporal resolution,sensitivity to environment,and integral effects.A new method for measuring aero-optical aberration of supersonic flow is proposed.Based on the self-developed measuring method of supersonic density field,the wavefront aberration induced by a cross-section of supersonic flow field could be measured by ray-tracing.Compared with other methods,the present one has three significant innovations:(1) high spatiotemporal resolution.Its time resolution is 6 ns,and the spatial resolution can reach up to micrometers;(2) it can avoid the integral effects and study the wavefront aberration induced by the flow field of interest locally;(3) it can also avoid the influence from the test section wall boundary layers and environmental disturbances.The present method was applied to supersonic flow around an optical bow cap.The results of high spatiotemporal resolution reveal fine wavefront structures,and show that shock waves,expansion waves and turbulent boundary layers have different impacts on the wavefront aberration.
文摘A collimated light beam will be refracted if it propagates through a flow-field with index-of-refraction variations,and its wavefront will be distorted.If we measure the deflection angle of the light beam,the gradient of the wavefront can be obtained using the Malus law,and the wavefront aberration can be computed with a reconstruction algorithm.Two characteristics of background oriented schlieren(BOS) are conducive to wavefront aberration measurement:BOS can be used to measure the deflection angle of a light beam by measuring the displacement field between the reference image and the experiment image.Moreover,in a BOS system of Schlieren mode,only the ray perpendicular to the background image can be captured with a camera.This is helpful to measure wavefront aberrations that occur after a planar wavefront has passed through the flow-field.Based on these characteristics of BOS of Schlieren mode,a new wavefront measurement technique,which is called the BOS-based wavefront technique(BOS-WT),is proposed in this paper.It works by constructing the relationship between the displacement of the background image and the aero-optical wavefront gradient and uses the Southwell wavefront reconstruction algorithm.A BOS-WT system was assembled,and its temporal resolution was found to be 6 ns,and its temporal-correlation resolution reached 0.2 μs.A BOS-WT can measure the time-correlation transient wavefront quantitatively.It is simple and easy to operate.In this paper,we also present a study of the aero-optical performance of supersonic mixing layer based on our BOS-WT transient wavefronts at an interval of 5 μs.The results showed the wavefront was transient and distorted after it had passed through the mixing layer.Through the analysis of the data at the 5 μs interval,the temporal evolution of wavefront can be obtained.
文摘针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦合效应,对导引头典型状态的流场进行了模拟,获得了流场的密度、温度、压力等参数和窗口的温度场参数。基于流场参数,利用HyFLOW气动光学传输效应计算功能,开展了红外光学传输成像计算;利用HyFLOW气动光学辐射效应计算模块,开展了流场和光学窗口的热辐射计算。计算结果表明,类THAAD导引头在30 km以上飞行时,流场和光学窗口基本不会影响目标信号的光学传输成像,但流场和窗口的热辐射效应会对导引头识别目标造成影响。不过随着飞行高度的升高,这种影响会减小。