Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantifica...Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantification within both kinds of sludge were monitored by terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) technique, respectively. The results showed that the COD removal of both kinds of sludge changed slightly when the ammonia removal efficiency decreased gradually with the ammonia concentration increased from 100 mg L^-1 to 500 mg L^-1 Furthermore, activated sludge demonstrated higher ammonia removal ability than that of aerobic granular sludge (10%- 16%). As revealed by T-RFLP, activated sludge was of higher ammonia removal ability and more abounding bacterial diversity than that of aerobic granular sludge, suggesting that the bacterial diversity was probably relevant to the ammonia removal. The RT-PCR results indicated that the AOB population size of activated sludge and aerobic granular sludge were 2.80× 10^4-3.44× 10^4cells (g dried sludge)^-1 and 7.83×10^4-1.18×10^5cells (g dried sludge)^-1, respectively. There is no obvious positive correlation between the ammonia removal ability and number of AOB in both kinds of sludge.展开更多
Saline wastewater is regarded as a challenge for wastewater treatment plants because high-salinity conditions negatively affect on traditional biological technologies.Aerobic granular sludge(AGS)has gained attention a...Saline wastewater is regarded as a challenge for wastewater treatment plants because high-salinity conditions negatively affect on traditional biological technologies.Aerobic granular sludge(AGS)has gained attention as a promising technology for saline wastewater treatment because of its compact structure and the ability to withstand toxic loadings.Therefore,this study investigated the saltresistance performance,sludge properties and microbial community of AGS under low-salinity and high-salinity conditions,with the saline concentrations ranging from 0 to 50 g/L.The results showed that AGS could withstand long-term saline stresses,and the maximum salinity reached 50 g/L within 113 d.Under salinities of 10,30,and 50 g/L,the chemical oxygen demand(COD)removal efficiencies were 90.3%,88.0%and 78.0%,respectively.AGS also its maintained strength and aggregation at salinities of 10 and 30 g/L.Overproduction of extracellular polymeric substances(EPS)by non-halophilic bacteria that enhanced sludge aggregation.The compact structure that ensured the microorganisms bioactivity helped to remove organic matters under salinities of 10 and 30 g/L.At a salinity of 50 g/L,moderately halophilic bacteria,including Salinicola,Thioclava,Idiomarina and Albirhodobacter,prevailed in the reactor.The dominant microbial communities shifted to moderately halophilic bacteria,which could maintain aerobic granular stabilization and remove organic matters under 50 g/L salinity.These results in this study provide a further explanation for the long-term operation of AGS for treating saline wastewater at different salinities.It is hoped that this work could bring some clues for the mystery of salt-resistance mechanisms.展开更多
Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the ...Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculurn B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g.min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.展开更多
Aerobic granule is a special microbial aggregate associated with biofilm structure.The formation of aerobic granular sludge is primarily depending on its bacterial community and relevant microbiological properties.In ...Aerobic granule is a special microbial aggregate associated with biofilm structure.The formation of aerobic granular sludge is primarily depending on its bacterial community and relevant microbiological properties.In this experiment,a strain with high microbial attachment was isolated from aerobic granular sludge,and the detailed characteristics were examined.Its high attachment ability could reach 2.34(OD600 nm),while other low attachment values were only around 0.06-0.32,which indicated a big variation among the different bacteria.The strain exhibited a very special morphology with many fibric fingers under SEM observation.A distinctive behaviour was to form a spherical particle by themselves,which would be very beneficial for the formation and development of granular sludge.The EPS measurement showed that its PN content was higher than low attachment bacteria,and 3 DEEM confirmed that there were some different components.Based on the 16 S rRNA analysis,it was identified to mostly belong to Stenotrophomonas.Its augmentation to particle sludge cultivation demonstrated that the strain could significantly promote the formation of aerobic granule.Conclusively,it was strongly suggested that it might be used as a good and potential model strain or chassis organism for the aerobic granular sludge formation and development.展开更多
Two types of inoculated sludges, granular sludge that had been stored at-20°C and activated sludge, were investigated for the domestication of aerobic granular sludges(AGSs in sequencing batch reactors(SBRs). The...Two types of inoculated sludges, granular sludge that had been stored at-20°C and activated sludge, were investigated for the domestication of aerobic granular sludges(AGSs in sequencing batch reactors(SBRs). The results showed that using the stored granular sludge as inoculation sludge could effectively shorten the domestication time of AGS and yielded mature granular sludge after 22 days of operation. The AGS domesticated by stored granular sludge had better biomass and sedimentation properties; its MLSS and SVI reached8.55 g/L and 35.27 mL/g, respectively. The removal efficiencies for chemical oxygen demand(COD), ammonium nitrogen(NH_4^+-N) and total phosphorus(TP) reached 90.76%, 97.39% and 96.40%, respectively. By contrast, 54 days were needed to obtain mature granules using activated sludge. The microbial community structure was probed by using scanning electron microscopy(SEM) and high-throughput sequencing. The results showed that the diversity of the microbial community in mature granules was reduced when stored granular sludge rather than activated sludge was employed as inoculation sludge, and the dominant microbes were changed. The dominant species in mature granules domesticated using stored granular sludge were Zoogloea, Acidovorax and Tolumonas at the genus classification level, while the dominant species were Zoogloea and TM7-genera in granules developed from activated sludge.展开更多
As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^...As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^2+,Mg^2+,Cu^2+,Fe^2+,Zn^2+,and K+which are the most common ions present in biological wastewater treatment systems,on the microbial attachment of AGAS and flocculent activated sludge(FAS),from which AGAS is always derived,in order to provide a new strategy for the rapid cultivation and stability control of AGAS.The result showed that attachment biomass of AGAS was about 300%higher than that of FAS without the addition of metal ions.Different metal ions had different effects on the process of microbial attachment.FAS and AGAS reacted differently to the metal ions as well,and in fact,AGAS was more sensitive to the metal ions.Specifically,Ca^2+,Mg^2+,and K+could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations,Cu^2+,Fe^2+,and Zn^2+were also beneficial to the microbial attachment of FAS at low concentrations,but Cu^2+,Fe^2+,and Zn^2+greatly inhibited the attachment process of AGAS even at extremely low concentrations.In addition,the acylated homoserine lactone(AHL)-based quorum sensing system,the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions.As all these parameters had close relationships with the microbial attachment process,the microbial attachment may be affected by changes of these parameters.展开更多
基金Acknowledge: The study are supported by the Natural Science Foundation of Jiangsu Province (No. BK2005402) and National Natural Science Foundation (No. 30640018).
文摘Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantification within both kinds of sludge were monitored by terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) technique, respectively. The results showed that the COD removal of both kinds of sludge changed slightly when the ammonia removal efficiency decreased gradually with the ammonia concentration increased from 100 mg L^-1 to 500 mg L^-1 Furthermore, activated sludge demonstrated higher ammonia removal ability than that of aerobic granular sludge (10%- 16%). As revealed by T-RFLP, activated sludge was of higher ammonia removal ability and more abounding bacterial diversity than that of aerobic granular sludge, suggesting that the bacterial diversity was probably relevant to the ammonia removal. The RT-PCR results indicated that the AOB population size of activated sludge and aerobic granular sludge were 2.80× 10^4-3.44× 10^4cells (g dried sludge)^-1 and 7.83×10^4-1.18×10^5cells (g dried sludge)^-1, respectively. There is no obvious positive correlation between the ammonia removal ability and number of AOB in both kinds of sludge.
基金financially supported by the National Natural Science Foundation of China(No.51578240)the South-West Minzu University Research Startup Funds(China)(No.RQD2022034).
文摘Saline wastewater is regarded as a challenge for wastewater treatment plants because high-salinity conditions negatively affect on traditional biological technologies.Aerobic granular sludge(AGS)has gained attention as a promising technology for saline wastewater treatment because of its compact structure and the ability to withstand toxic loadings.Therefore,this study investigated the saltresistance performance,sludge properties and microbial community of AGS under low-salinity and high-salinity conditions,with the saline concentrations ranging from 0 to 50 g/L.The results showed that AGS could withstand long-term saline stresses,and the maximum salinity reached 50 g/L within 113 d.Under salinities of 10,30,and 50 g/L,the chemical oxygen demand(COD)removal efficiencies were 90.3%,88.0%and 78.0%,respectively.AGS also its maintained strength and aggregation at salinities of 10 and 30 g/L.Overproduction of extracellular polymeric substances(EPS)by non-halophilic bacteria that enhanced sludge aggregation.The compact structure that ensured the microorganisms bioactivity helped to remove organic matters under salinities of 10 and 30 g/L.At a salinity of 50 g/L,moderately halophilic bacteria,including Salinicola,Thioclava,Idiomarina and Albirhodobacter,prevailed in the reactor.The dominant microbial communities shifted to moderately halophilic bacteria,which could maintain aerobic granular stabilization and remove organic matters under 50 g/L salinity.These results in this study provide a further explanation for the long-term operation of AGS for treating saline wastewater at different salinities.It is hoped that this work could bring some clues for the mystery of salt-resistance mechanisms.
基金supported by the National Science Foundation of Heilongjiang Province (No. E200824)the Hi-Tech Research and Development Program (863) of China (No. 2002AA601310)
文摘Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculurn B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g.min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.
基金supported by the National Natural Science Foundation of China(No.51578069)Beijing Science and Technology Commission Project(No.Z171100000717012)。
文摘Aerobic granule is a special microbial aggregate associated with biofilm structure.The formation of aerobic granular sludge is primarily depending on its bacterial community and relevant microbiological properties.In this experiment,a strain with high microbial attachment was isolated from aerobic granular sludge,and the detailed characteristics were examined.Its high attachment ability could reach 2.34(OD600 nm),while other low attachment values were only around 0.06-0.32,which indicated a big variation among the different bacteria.The strain exhibited a very special morphology with many fibric fingers under SEM observation.A distinctive behaviour was to form a spherical particle by themselves,which would be very beneficial for the formation and development of granular sludge.The EPS measurement showed that its PN content was higher than low attachment bacteria,and 3 DEEM confirmed that there were some different components.Based on the 16 S rRNA analysis,it was identified to mostly belong to Stenotrophomonas.Its augmentation to particle sludge cultivation demonstrated that the strain could significantly promote the formation of aerobic granule.Conclusively,it was strongly suggested that it might be used as a good and potential model strain or chassis organism for the aerobic granular sludge formation and development.
基金supported by the National Natural Science Foundation of China (Nos. 21667017 and 51608148)the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. 2017TS02)
文摘Two types of inoculated sludges, granular sludge that had been stored at-20°C and activated sludge, were investigated for the domestication of aerobic granular sludges(AGSs in sequencing batch reactors(SBRs). The results showed that using the stored granular sludge as inoculation sludge could effectively shorten the domestication time of AGS and yielded mature granular sludge after 22 days of operation. The AGS domesticated by stored granular sludge had better biomass and sedimentation properties; its MLSS and SVI reached8.55 g/L and 35.27 mL/g, respectively. The removal efficiencies for chemical oxygen demand(COD), ammonium nitrogen(NH_4^+-N) and total phosphorus(TP) reached 90.76%, 97.39% and 96.40%, respectively. By contrast, 54 days were needed to obtain mature granules using activated sludge. The microbial community structure was probed by using scanning electron microscopy(SEM) and high-throughput sequencing. The results showed that the diversity of the microbial community in mature granules was reduced when stored granular sludge rather than activated sludge was employed as inoculation sludge, and the dominant microbes were changed. The dominant species in mature granules domesticated using stored granular sludge were Zoogloea, Acidovorax and Tolumonas at the genus classification level, while the dominant species were Zoogloea and TM7-genera in granules developed from activated sludge.
基金supported by the National Natural Science Foundation of China (No. 51578069)
文摘As a special biofilm structure,microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge(AGAS).This experiment was to investigate the biological effect of Ca^2+,Mg^2+,Cu^2+,Fe^2+,Zn^2+,and K+which are the most common ions present in biological wastewater treatment systems,on the microbial attachment of AGAS and flocculent activated sludge(FAS),from which AGAS is always derived,in order to provide a new strategy for the rapid cultivation and stability control of AGAS.The result showed that attachment biomass of AGAS was about 300%higher than that of FAS without the addition of metal ions.Different metal ions had different effects on the process of microbial attachment.FAS and AGAS reacted differently to the metal ions as well,and in fact,AGAS was more sensitive to the metal ions.Specifically,Ca^2+,Mg^2+,and K+could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations,Cu^2+,Fe^2+,and Zn^2+were also beneficial to the microbial attachment of FAS at low concentrations,but Cu^2+,Fe^2+,and Zn^2+greatly inhibited the attachment process of AGAS even at extremely low concentrations.In addition,the acylated homoserine lactone(AHL)-based quorum sensing system,the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions.As all these parameters had close relationships with the microbial attachment process,the microbial attachment may be affected by changes of these parameters.