A program for calculating the aerodynamic properties of hypersonic vehicles based on the surface element method was developed using the general-purpose programming language C++. The calculated values of lift coefficie...A program for calculating the aerodynamic properties of hypersonic vehicles based on the surface element method was developed using the general-purpose programming language C++. The calculated values of lift coefficients, drag coefficients, and surface pressure coefficients are discussed with the results of wind tunnel experiments using the HL-20 lift body and the NASA hypersonic aircraft STS Columbia OV-102 as research subjects. Finally, the results of the experimental and wind tunnel studies of the aerodynamic characteristics of the HL-20 lift body at an altitude of 65 km and Mach numbers of 6 and 10 Ma are discussed. The maximum error in the aerodynamic characteristics at 6 Ma does not exceed 3%, consistent with the results. The maximum error at 10 Ma occurs in the 11° - 14° angle of attack and does not exceed 10%, which is still within the error tolerance. The STS results for NASA’s hypersonic aircraft were also tested using this procedure. Experimental aerodynamic data for the Colombian OV-102 aircraft. The results show that the program takes only 10 minutes to calculate the results, with no more than 2% error from the wind tunnel experimental results.展开更多
Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel ...Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel test device,which has two moving tracks,was developed.The rationality of the test result was discussed,the effects of intersection mode,yaw angle and lane spacing on the aerodynamic coefficients of the leeward train were analyzed,and the difference of aerodynamic coefficients between the head vehicle and the tail vehicle was discussed.The results show that the proposed test device has good repeatability.The intersection modes have a certain effect on the aerodynamic force of the leeward train when two trains are passing each other,and the results should be more reasonable during the two trains dynamic passing each other.With the decrease of yaw angle,the sudden change of train aerodynamic coefficients is more obvious.The decrease of lane spacing will increase the sudden change of leeward vehicles.In the process of two trains passing each other,the aerodynamic coefficients of the head vehicle and tail vehicle are significantly different,so the coupling vibration analysis of wind-vehicle-bridge system should be considered separately.展开更多
An experimental study on examining aerodynamic characteristics of fuselage cross sections for RLVs (Reusable Launch Vehicles) was conducted at Mach number 0.3, 0.9 and 4.0 in the wind tunnel of ISAS (Institute of Spac...An experimental study on examining aerodynamic characteristics of fuselage cross sections for RLVs (Reusable Launch Vehicles) was conducted at Mach number 0.3, 0.9 and 4.0 in the wind tunnel of ISAS (Institute of Space and Astronautical Science), JAXA (Japan Aerospace Exploration Agency). Three bodies, having the same projected area and length, with and without a set of fins, were tested. Their cross sections are a circle, a square and a triangle with rounded corners. The results showed that the fuselage cross sections had large effects on aerodynamic characteristics in subsonic and transonic flow. The lift coefficient of the model having the triangular cross section with a set of the fins was larger than that of the others in high angles of attack region due to contributions of the separation vortices generated from the fuselage expanding to the wing surface.展开更多
The investigation on the aerodynamic characteristics of the high-attitude long-endurance (HALE) Diamond Joined-Wing configuration unmanned aerial vehicle ( UAV) was carried out by the theoretical analysis method and n...The investigation on the aerodynamic characteristics of the high-attitude long-endurance (HALE) Diamond Joined-Wing configuration unmanned aerial vehicle ( UAV) was carried out by the theoretical analysis method and numerical simulation. Research indicates that as the wing of the UAV is composed of the front wing and the after wing, the after wing has the ability to transmit the front wing's boundary layer to the after wing root which can inhibit the front wing's flow separation. Although the front wing was affected by the retardation of the after wing, the aerodynamic performance of the front wing was better than that of alone front wing in most cases. The after wing was also affected by the wake and downwash of the front wing, and its aerodynamic performance was greatly decreased. The characteristic curve of the pitching moment of the UAV had nonlinear characteristics. The flow field structure of the after wing changed by the front wing wake direct sweep and flow separation at the after wing root were the main reasons that non-linear ′rise′phenomenon occurred in two segments ( α = 0° and α = 8° ) of the characteristic curve of pitching moment. Moreover, coupling of the flow separation characteristic of the front wing and the after wing resulted in the pitching moment ′pitchup′ phenomenon. The lateral-directional static stability of the flat layout was weak. The HALE Diamond Joined-Wing configuration UAV ' s aerodynamic performance can be improved and the problems in engineering applications can be effectively alleviated by adjusting the overall layout parameters.展开更多
A projectile with exotic wraparound wings( WAW) configuration is designed to improve the finstabilized projectile shooting quality. Two fin-stabilized projectiles with the same body with and without exotic WAW configu...A projectile with exotic wraparound wings( WAW) configuration is designed to improve the finstabilized projectile shooting quality. Two fin-stabilized projectiles with the same body with and without exotic WAW configuration are simulated numerically by applying the Roe scheme. The shear-stress transport turbulence models and the lower-upper symmetric Gauss-Seidel implicit method are used to solve 3D Reynoldsaveraged Navier—Stokes equations. The differences in aerodynamic coefficients and aerodynamic characteristics of the projectiles when the Mach number varies from 0. 35 to 0. 95 are obtained,and the cause of these differences is analyzed. The calculation results indicate that the lift-to-drag ratio of the projectile significantly increases,the rolling moment decreases,and the position of the pressure center of the projectile shows relatively small changes when the exotic WAW configuration is used. Therefore,this projectile can obviously reduce rolling effect,enlarge range and improve flying stability.展开更多
Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and hav...Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.展开更多
This research paper discusses constructing a unified framework to develop a full-rate scheme for hypersonic heating calculations. The method uses a flow tracing technique with normal phase vector adjustment in a non-s...This research paper discusses constructing a unified framework to develop a full-rate scheme for hypersonic heating calculations. The method uses a flow tracing technique with normal phase vector adjustment in a non-structured delineated grid combined with empirical formulations for convective heat transfer standing and non-standing heat flow engineering. This is done using dev-C++ programming in the C++ language environment. Comparisons of the aerodynamic thermal environment with wind tunnel experimental data for the Space Shuttle and Apollo return capsules and standing point heat transfer measurements for the Fire II return capsule was carried out in the hypersonic Mach number range of 6 - 35 Ma. The tests were carried out on an 11th Gen Intel(R) Core(TM) i5-1135G7 processor with a valuable test time of 45 mins. The agreement is good, but due to the complexity of the space shuttle tail, the measurements are still subject to large errors compared to wind tunnel experiments. A comparison of the measured Fire-II return capsule standing-point heat values with the theory for calculating standing-point heat fluxes simulated using Fay & Riddell and wind tunnel experiments is provided to verify the validity of this procedure for hypersonic vehicle heat transfer prediction. The heat fluxes assessed using this method for different aerodynamic profiles of hypersonic vehicles agree very well with the theoretical solution.展开更多
Based on the analysis of the flying scheme and flying style of an extended range guided munition(ERGM), the aerodynamic characteristics design standards were put forward. According to the standards, the ERGM aerodynam...Based on the analysis of the flying scheme and flying style of an extended range guided munition(ERGM), the aerodynamic characteristics design standards were put forward. According to the standards, the ERGM aerodynamic configuration was designed, and the wind tunnel experiments were processed. The experimental results show that the configuration has lower drag and good static stability at unguided flying stage. Moreover, the stability, maneuverability, rudder deflection angle and balance angle of attack of the configuration are all reasonably matched at guided flying stage, and the munition with the configuration can glide with larger lift-drag ratio at little balance angle of attack. The experimental results also indicate that the canard can't conduct rolling control when 1.0 < Ma < 1.5, so the ERGM must take rolling flight style with certain limited rolling speed.展开更多
The control problem for under-actuated reentry vehicle like HTV-2 is considered with small angle of attack.The control strategy for an aircraft with positive lateral control departure parameter relies on strong latera...The control problem for under-actuated reentry vehicle like HTV-2 is considered with small angle of attack.The control strategy for an aircraft with positive lateral control departure parameter relies on strong lateral stability,which declines with the decrease of the angle of attack.Thus,to control the lateral-directional motion in a stable state is hard and even impossible in some scenarios where the under-actuated reentry vehicle,like HTV-2,flies in a low angle of attack.To address this problem,the lateral-directional open-loop motion characteristics are analyzed.The results show that in an uncontrolled state,the lateral-directional motion can automatically converge to stabilization thanks to the aerodynamic damping effect.Therefore,a method of turning-off the lateral-directional control and inviting aerodynamic damping to control can achieve stability.The six-degree-of-freedom simulation show that the lateral-directional motion can be stabilized by the aerodynamic damping,and the lateral position error caused by the bank angle deviation is limited near the zero-rise angle of attack.The control strategy is effective.展开更多
The problem of aerodynamic configuration design optimization is a multidisciplinary design optimization(MDO) problem, and recently the MDO method is widely adopted in the field of hypersonic vehicle configuration desi...The problem of aerodynamic configuration design optimization is a multidisciplinary design optimization(MDO) problem, and recently the MDO method is widely adopted in the field of hypersonic vehicle configuration design. From the aerodynamic point of view, the aerodynamics, aerothermodynamics and trajectory are considered in this paper. Generally speaking, the aerodynamic characteristics, aerodynamic heating and trajectory are determined by the aerodynamic configuration and the design of flight trajectory. The design method considering these three disciplines is proposed. The parametric geometrical configurations are proposed, and the aerodynamic characteristics are predicted by the rapid and effective engineering method. The optimization of aerodynamic configuration considering the integration of aerodynamics,aerothermodynamics and trajectory is investigated based on the parametric geometrical configuration. Maximum lift-to-drag ratio, maximum range of the trajectory and minimum total heat load of the stagnation point are chosen as the three optimal goals. The detailed research indicates that the optimal configurations and trajectories with different weighting factors can be obtained by the optimization, and there are obvious differences between them. The optimal configuration and flight trajectory obtained by the optimization can be used as the feasible schemes in the future work.展开更多
A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-...A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-body UAV configuration;the second is to analyze the aerodynamics of the geometric model;the third is to create aerodynamic surrogate model;and the final step is to predict the trim drag using the surrogate model.Hence,a tool for trim drag prediction is developed by integration of the four steps.The impacts of the allocation of control surfaces,position of gravity center and planform parameters on the trim drag are investigated by using the tool.Results show that using the control surface in outer wing for trim has an advantage of lower trim drag,and the position of gravity center has a primary impact on the trim drag.Moreover,the planform has secondary impacts on the trim drag.展开更多
文摘A program for calculating the aerodynamic properties of hypersonic vehicles based on the surface element method was developed using the general-purpose programming language C++. The calculated values of lift coefficients, drag coefficients, and surface pressure coefficients are discussed with the results of wind tunnel experiments using the HL-20 lift body and the NASA hypersonic aircraft STS Columbia OV-102 as research subjects. Finally, the results of the experimental and wind tunnel studies of the aerodynamic characteristics of the HL-20 lift body at an altitude of 65 km and Mach numbers of 6 and 10 Ma are discussed. The maximum error in the aerodynamic characteristics at 6 Ma does not exceed 3%, consistent with the results. The maximum error at 10 Ma occurs in the 11° - 14° angle of attack and does not exceed 10%, which is still within the error tolerance. The STS results for NASA’s hypersonic aircraft were also tested using this procedure. Experimental aerodynamic data for the Colombian OV-102 aircraft. The results show that the program takes only 10 minutes to calculate the results, with no more than 2% error from the wind tunnel experimental results.
基金Projects(51778544,51978589,51908472) supported by the National Natural Science Foundation of ChinaProject(2682021CG014) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Two trains passing each other is controlling factor for the wind-vehicle-bridge systems.To test the aerodynamic characteristics of moving vehicles under crosswinds when two trains are passing each other,a wind tunnel test device,which has two moving tracks,was developed.The rationality of the test result was discussed,the effects of intersection mode,yaw angle and lane spacing on the aerodynamic coefficients of the leeward train were analyzed,and the difference of aerodynamic coefficients between the head vehicle and the tail vehicle was discussed.The results show that the proposed test device has good repeatability.The intersection modes have a certain effect on the aerodynamic force of the leeward train when two trains are passing each other,and the results should be more reasonable during the two trains dynamic passing each other.With the decrease of yaw angle,the sudden change of train aerodynamic coefficients is more obvious.The decrease of lane spacing will increase the sudden change of leeward vehicles.In the process of two trains passing each other,the aerodynamic coefficients of the head vehicle and tail vehicle are significantly different,so the coupling vibration analysis of wind-vehicle-bridge system should be considered separately.
文摘An experimental study on examining aerodynamic characteristics of fuselage cross sections for RLVs (Reusable Launch Vehicles) was conducted at Mach number 0.3, 0.9 and 4.0 in the wind tunnel of ISAS (Institute of Space and Astronautical Science), JAXA (Japan Aerospace Exploration Agency). Three bodies, having the same projected area and length, with and without a set of fins, were tested. Their cross sections are a circle, a square and a triangle with rounded corners. The results showed that the fuselage cross sections had large effects on aerodynamic characteristics in subsonic and transonic flow. The lift coefficient of the model having the triangular cross section with a set of the fins was larger than that of the others in high angles of attack region due to contributions of the separation vortices generated from the fuselage expanding to the wing surface.
基金Sponsored by the Civil Aircraft Project(Grant No.MIE-2015-F-009)the Shaanxi Province Science and Technology Project(Grant No.2015KTCQ01-78)
文摘The investigation on the aerodynamic characteristics of the high-attitude long-endurance (HALE) Diamond Joined-Wing configuration unmanned aerial vehicle ( UAV) was carried out by the theoretical analysis method and numerical simulation. Research indicates that as the wing of the UAV is composed of the front wing and the after wing, the after wing has the ability to transmit the front wing's boundary layer to the after wing root which can inhibit the front wing's flow separation. Although the front wing was affected by the retardation of the after wing, the aerodynamic performance of the front wing was better than that of alone front wing in most cases. The after wing was also affected by the wake and downwash of the front wing, and its aerodynamic performance was greatly decreased. The characteristic curve of the pitching moment of the UAV had nonlinear characteristics. The flow field structure of the after wing changed by the front wing wake direct sweep and flow separation at the after wing root were the main reasons that non-linear ′rise′phenomenon occurred in two segments ( α = 0° and α = 8° ) of the characteristic curve of pitching moment. Moreover, coupling of the flow separation characteristic of the front wing and the after wing resulted in the pitching moment ′pitchup′ phenomenon. The lateral-directional static stability of the flat layout was weak. The HALE Diamond Joined-Wing configuration UAV ' s aerodynamic performance can be improved and the problems in engineering applications can be effectively alleviated by adjusting the overall layout parameters.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51076066)
文摘A projectile with exotic wraparound wings( WAW) configuration is designed to improve the finstabilized projectile shooting quality. Two fin-stabilized projectiles with the same body with and without exotic WAW configuration are simulated numerically by applying the Roe scheme. The shear-stress transport turbulence models and the lower-upper symmetric Gauss-Seidel implicit method are used to solve 3D Reynoldsaveraged Navier—Stokes equations. The differences in aerodynamic coefficients and aerodynamic characteristics of the projectiles when the Mach number varies from 0. 35 to 0. 95 are obtained,and the cause of these differences is analyzed. The calculation results indicate that the lift-to-drag ratio of the projectile significantly increases,the rolling moment decreases,and the position of the pressure center of the projectile shows relatively small changes when the exotic WAW configuration is used. Therefore,this projectile can obviously reduce rolling effect,enlarge range and improve flying stability.
基金Supported by the National Natural Science Foundation of China (Grant No. 10772186)the Key Foundation of National Natural Science Foundation of China (Grant No. 90505016)
文摘Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.
文摘This research paper discusses constructing a unified framework to develop a full-rate scheme for hypersonic heating calculations. The method uses a flow tracing technique with normal phase vector adjustment in a non-structured delineated grid combined with empirical formulations for convective heat transfer standing and non-standing heat flow engineering. This is done using dev-C++ programming in the C++ language environment. Comparisons of the aerodynamic thermal environment with wind tunnel experimental data for the Space Shuttle and Apollo return capsules and standing point heat transfer measurements for the Fire II return capsule was carried out in the hypersonic Mach number range of 6 - 35 Ma. The tests were carried out on an 11th Gen Intel(R) Core(TM) i5-1135G7 processor with a valuable test time of 45 mins. The agreement is good, but due to the complexity of the space shuttle tail, the measurements are still subject to large errors compared to wind tunnel experiments. A comparison of the measured Fire-II return capsule standing-point heat values with the theory for calculating standing-point heat fluxes simulated using Fay & Riddell and wind tunnel experiments is provided to verify the validity of this procedure for hypersonic vehicle heat transfer prediction. The heat fluxes assessed using this method for different aerodynamic profiles of hypersonic vehicles agree very well with the theoretical solution.
文摘Based on the analysis of the flying scheme and flying style of an extended range guided munition(ERGM), the aerodynamic characteristics design standards were put forward. According to the standards, the ERGM aerodynamic configuration was designed, and the wind tunnel experiments were processed. The experimental results show that the configuration has lower drag and good static stability at unguided flying stage. Moreover, the stability, maneuverability, rudder deflection angle and balance angle of attack of the configuration are all reasonably matched at guided flying stage, and the munition with the configuration can glide with larger lift-drag ratio at little balance angle of attack. The experimental results also indicate that the canard can't conduct rolling control when 1.0 < Ma < 1.5, so the ERGM must take rolling flight style with certain limited rolling speed.
文摘The control problem for under-actuated reentry vehicle like HTV-2 is considered with small angle of attack.The control strategy for an aircraft with positive lateral control departure parameter relies on strong lateral stability,which declines with the decrease of the angle of attack.Thus,to control the lateral-directional motion in a stable state is hard and even impossible in some scenarios where the under-actuated reentry vehicle,like HTV-2,flies in a low angle of attack.To address this problem,the lateral-directional open-loop motion characteristics are analyzed.The results show that in an uncontrolled state,the lateral-directional motion can automatically converge to stabilization thanks to the aerodynamic damping effect.Therefore,a method of turning-off the lateral-directional control and inviting aerodynamic damping to control can achieve stability.The six-degree-of-freedom simulation show that the lateral-directional motion can be stabilized by the aerodynamic damping,and the lateral position error caused by the bank angle deviation is limited near the zero-rise angle of attack.The control strategy is effective.
基金supported by the National Natural Science Foundation of China(91216204)
文摘The problem of aerodynamic configuration design optimization is a multidisciplinary design optimization(MDO) problem, and recently the MDO method is widely adopted in the field of hypersonic vehicle configuration design. From the aerodynamic point of view, the aerodynamics, aerothermodynamics and trajectory are considered in this paper. Generally speaking, the aerodynamic characteristics, aerodynamic heating and trajectory are determined by the aerodynamic configuration and the design of flight trajectory. The design method considering these three disciplines is proposed. The parametric geometrical configurations are proposed, and the aerodynamic characteristics are predicted by the rapid and effective engineering method. The optimization of aerodynamic configuration considering the integration of aerodynamics,aerothermodynamics and trajectory is investigated based on the parametric geometrical configuration. Maximum lift-to-drag ratio, maximum range of the trajectory and minimum total heat load of the stagnation point are chosen as the three optimal goals. The detailed research indicates that the optimal configurations and trajectories with different weighting factors can be obtained by the optimization, and there are obvious differences between them. The optimal configuration and flight trajectory obtained by the optimization can be used as the feasible schemes in the future work.
基金supported by the National Defense Basic Scientific Research Program of China(No.A2520110006)the Fundamental Research Funds for the Central Universities(Nos.NJ20130001,NJ2012014)
文摘A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-body UAV configuration;the second is to analyze the aerodynamics of the geometric model;the third is to create aerodynamic surrogate model;and the final step is to predict the trim drag using the surrogate model.Hence,a tool for trim drag prediction is developed by integration of the four steps.The impacts of the allocation of control surfaces,position of gravity center and planform parameters on the trim drag are investigated by using the tool.Results show that using the control surface in outer wing for trim has an advantage of lower trim drag,and the position of gravity center has a primary impact on the trim drag.Moreover,the planform has secondary impacts on the trim drag.