期刊文献+
共找到2,066篇文章
< 1 2 104 >
每页显示 20 50 100
EFFECT OF UPSTREAM ROTOR ON AERODYNAMIC FORCE OF DOWNSTREAM STATOR BLADES
1
作者 王志强 胡骏 +1 位作者 王英锋 赵勇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期94-101,共8页
To study the amplitude and the frequency of the aerodynamic force on stator blades, micro-sensors are embedded on the surface of stator blades of a low-speed single-stage axial compressor rig. The unsteady pressure di... To study the amplitude and the frequency of the aerodynamic force on stator blades, micro-sensors are embedded on the surface of stator blades of a low-speed single-stage axial compressor rig. The unsteady pressure distribution on stator blades is measured under the conditions of different axial spacing between the rotor and the stator, different rotating speeds and an extensive range of the mass flow. Amplitudes and frequencies of aerodynamic forces are analyzed by the Fourier transform. Experimental results show that under the effect of the rotor wake, the dominant frequencies of pressure fluctuations on stator blades are the rotor blade passing frequency (BPF) and its harmonics. The higher harmonics of the rotor BPF in the fore part of the suction side are more prominent than that in the other parts of the stator blade. Otherwise, fluctuations of the pressure and the aerodynamic force on stator blades vary with the mass flow, the rotating speed and the axial spacing between the rotor and the stator. 展开更多
关键词 blade-row interaction aerodynamic force COMPRESSOR spectral feature
下载PDF
Influence of Anteroposterior Symmetrical Aero-Wings on the Aerodynamic Performance of High-Speed Train
2
作者 Peiheng He Jiye Zhang +2 位作者 Lan Zhang Jiaqi Wang Yuzhe Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期937-953,共17页
The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of th... The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work. 展开更多
关键词 Anteroposterior symmetrical aero-wing wheel-rail wear aerodynamic lift force ground effect numerical simulation
下载PDF
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
3
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization Alternating direction method of multipliers Proximal operators
下载PDF
Experimental and Numerical Investigation on the Aerodynamic Characteristics of High-Speed Pantographs with Supporting Beam Wind Deflectors
4
作者 Shiyang Song Tongxin Han 《Fluid Dynamics & Materials Processing》 EI 2024年第1期127-145,共19页
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s... Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches. 展开更多
关键词 High-speed pantograph aerodynamic lift force supporting beam wind deflectors computational fluid dynamics(CFD)
下载PDF
Effects of unsteady deformation of flapping wing on its aerodynamic forces 被引量:3
5
作者 杜刚 孙茂 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第6期731-743,共13页
Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flappi... Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flapping wing are not much affected by considerable twist, but affected by camber deformation. The effect of combined camber and twist deformation is similar to that of camber deformation. With a deformation of 6% camber and 20% twist (typical values observed for wings of many insects), lift is increased by 10% - 20% and lift-to-drag ratio by around 10% compared with the case of a rigid fiat-plate wing. As a result, the deformation can increase the maximum lift coefficient of an insect, and reduce its power requirement for flight. For example, for a hovering bumblebee with dynamically deforming wings (6% camber and 20% twist), aerodynamic power required is reduced by about 16% compared with the case of rigid wings. 展开更多
关键词 INSECT wing deformation unsteady aerodynamic force computational fluid dynamics
下载PDF
Numerical simulation and optimization of aerodynamic uplift force of a high-speed pantograph 被引量:6
6
作者 Zhiyuan Dai Tian Li +2 位作者 Ning Zhou Jiye Zhang Weihua Zhang 《Railway Engineering Science》 2022年第1期117-128,共12页
Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard,... Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components.Three different angles for the baffles are-17°, 0° and 17°.Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckledownstream and knuckle-upstream operating conditions,respectively, which are almost equal and both meet the requirements of the standard EN50367:2012. 展开更多
关键词 High-speed pantograph aerodynamic uplift force BAFFLE Numerical simulation Multibody simulation
下载PDF
A generalized model for estimation of aerodynamic forces and moments for irregularly shaped bodies 被引量:1
7
作者 Elvedin Kljuno Alan Catovic 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期369-389,共21页
A novel method for estimation of an aerodynamic force and moment acting on an irregularly shaped body (such as HE projectile fragments) during its flight through the atmosphere is presented. The model assumes that fra... A novel method for estimation of an aerodynamic force and moment acting on an irregularly shaped body (such as HE projectile fragments) during its flight through the atmosphere is presented. The model assumes that fragments can be approximated with a tri-axial ellipsoid that has continuous surface given as a mathematical function. The model was validated with CFD data for a tri-axial ellipsoid and verified using CFD data on aerodynamic forces and moments acting on an irregularly shaped fragment. The contribution of this method is that it represents a significant step toward a modeling that does not require a cumbersome CFD simulation results for estimation of fragment dynamic and kinematic parameters. Due to this advantage, the model can predict the fragment motion consuming a negligible time when compared to the corresponding time consumed by CFD simulations. Parametric representation (generalization) of the fragment geometrical data and the conditions provides the way to analyze various correlations and how parameters influence the dynamics of the fragment flight. 展开更多
关键词 aerodynamic force aerodynamic MOMENT FRAGMENTS
下载PDF
Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force 被引量:1
8
作者 S.F.Lu W.Zhang X.J.Song 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期303-314,共12页
Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, un... Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity. 展开更多
关键词 Deploying piezoelectric laminated composite plate Time-varying nonlinear dynamics Third-order shear deformation plate theory Time-dependent modal function aerodynamic force
下载PDF
A note on the Galilean invariance of aerodynamic force theories in unsteady incompressible flows 被引量:1
9
作者 An-Kang Gao Jiezhi Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第6期1150-1154,共5页
As a basic principle in classical mechanics,the Galilean invariance states that the force is the same in all inertial frames of reference.But this principle has not been properly addressed by most unsteady aerodynamic... As a basic principle in classical mechanics,the Galilean invariance states that the force is the same in all inertial frames of reference.But this principle has not been properly addressed by most unsteady aerodynamic force theories,if the partial force contributed by a local flow structure is to be evaluated.In this note,we discuss the Galilean-invariance conditions of the partial force for several typical theories and numerically test what would happen if these conditions do not hold. 展开更多
关键词 Galilean invariance aerodynamic force theory Unsteady flow Flow diagnoses
下载PDF
SIMULATION STUDY OF AERODYNAMIC FORCE FOR HIGH-SPEED MAGNETICALLY-LEVITATED TRAINS
10
作者 LI Renxian LIU Yingqing ZHAI Wanming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期226-232,共7页
Based on Reynolds average Navier-Storkes equations of viscous incompressible fluid and k-ε two equations turbulent model, the aerodynamic forces of high-speed magnetically-levitated (maglev) trains in transverse an... Based on Reynolds average Navier-Storkes equations of viscous incompressible fluid and k-ε two equations turbulent model, the aerodynamic forces of high-speed magnetically-levitated (maglev) trains in transverse and longitudinal wind are investigated by finite volume method. Near 80 calculation cases for 2D transverse wind fields and 20 cases for 3D longitudinal wind fields are analyzed. The aerodynamic side force, yawing, drag, lift and pitching moment for different types of maglev trains and a wheel/rail train are compared under the different wind speeds. The types of maglev train models for 2D transverse wind analysis included electromagnetic suspension (EMS) type train, electrodynamic suspension (EDS) type train, EMS type train with shelter wind wall in one side or two sides of guideway and the walls, which are in different height or/and different distances from train body. The situation of maglev train running on viaduct is also analyzed. For 3D longitudinal wind field analysis, the model with different sizes of air clearances beneath maglev train is examined for the different speeds. Calculation result shows that: ① Different transverse effects are shown in different types of maglev trains. ② The shelter wind wall can fairly decrease the transverse effect on the maglev trains. ③ When the shelter wall height is 2 m, there is minimum side force on the train. When the shelter wall height is 2.5 m, there is minimum yawing moment on the train. ④ When the distance between inside surfaces of the walls and center of guideway is 4.0 m, there is minimum transverse influence on the train. ⑤ The size of air clearance beneath train body has a small influence on aerodynamic drag of the train, but has a fairly large effect on aerodynamic lift and pitching moment of the train. ⑥ The calculating lift and pitching moment for maglev train models are minus values. 展开更多
关键词 aerodynamic force Magnetically-levitated (maglev) train Stability Numerical analysis
下载PDF
Characteristics of aerodynamic force and flow structure behind single box girder under isolated slit control
11
作者 CHEN Guan-bin CHENWen-li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2542-2557,共16页
An isolated slit was placed in a single box girder to obtain passive leading-edge suction and trailing-edge jet flow to control the unsteady aerodynamic force and modify the flow structure.The Great Belt East Bridge w... An isolated slit was placed in a single box girder to obtain passive leading-edge suction and trailing-edge jet flow to control the unsteady aerodynamic force and modify the flow structure.The Great Belt East Bridge was used as a physical model at a geometric scale of 1:125.Wind tunnel experiments were conducted at an incoming airflow speed of 10 m/s,and the Reynolds number was calculated as 2.3×104 using the test model height and wind speed.The surface pressure distribution was measured,and the aerodynamic force acting on the test model with and without the isolated slit was calculated by integrating the pressure result.It was found that the control using an isolated slit can dramatically decrease the fluctuating surface pressure distribution and aerodynamic force.An analysis on the power spectral density of the lift force revealed that the isolated slit accelerated vortex shedding.Moreover,high-speed particle image velocimetry was used to investigate the wake flow structure behind the test model.A vortex separated from the upper surface was pushed to a lower location and the wake flow structure was modified by the isolated slit.A proper orthogonal decomposition(POD)of the flow field showed that the first two POD modes in the controlled case contributed less energy than those in the uncontrolled case,indicating that more energy was transferred to higher modes,and small-scale vortices had more energy.A secondary instability structure was found in the wake flow for a nondimensional jet momentum coefficient J of 0.0667. 展开更多
关键词 single box girder isolated slit aerodynamic force proper orthogonal decomposition(POD)mode
下载PDF
Evaluation of Aerodynamic Force and Stress Properties of Propeller of Model Airplane Using by Finite Element Analysis
12
作者 Satoshi Fukui Masayuki Nishida 《Journal of Civil Engineering and Architecture》 2019年第4期259-264,共6页
The purpose of this study is to evaluate propeller safety using three-dimensional finite element method analysis software.We concluded that the propeller is safe for flying.Propeller is indispensable for generating th... The purpose of this study is to evaluate propeller safety using three-dimensional finite element method analysis software.We concluded that the propeller is safe for flying.Propeller is indispensable for generating the impellent force.Therefore,safety evaluation of propeller is necessary.The object of the analysis is a propeller for model airplane.The propeller material is carbon fiber reinforced plastics and there is a carbon cross in the one side surface of the propeller.Other parts are formed with resin.The forces acting on a propeller include centrifugal force,air resistance,and vibration by mass imbalance.We analyzed centrifugal force and air resistance in this study.We made analysis model of propeller by ANSYS.Results show,that the maximum principal stress due to centrifugal force was 23.0 MPa.In addition,the maximum principal stress due to aerodynamic force was 2.3 MPa,and the maximum principal stress due to both forces was 24.0 MPa. 展开更多
关键词 method CENTRIFUGAL force aerodynamic forceS
下载PDF
Description and Estimation of Unsteady Aerodynamic Forces for Application to Elastic Aircraft
13
作者 Cui Pingyuan Wu Yaohua Huang Wenhu (School of Astronautics) 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1990年第3期77-83,共7页
In this paper, Duhamel's integral of the indicial function is used to describe unsteady aerodynamic forces. An identification method to estimate the aerodynamic forces is proposed for elastic aircraft by the maxim... In this paper, Duhamel's integral of the indicial function is used to describe unsteady aerodynamic forces. An identification method to estimate the aerodynamic forces is proposed for elastic aircraft by the maximum likelihood algorithm with estimated sensi tivities. A numerical example is given and the calculated results show the effectiveness of this method. 展开更多
关键词 弹性航空器 非稳态气动力 描述 估计 数值模型
下载PDF
An evaluation of force-based design vs.direct displacement-based design of jointed precast post-tensioned wall systems 被引量:12
14
作者 M. Ataur Rahman Sri Sritharan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第2期285-296,共12页
The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tension... The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability. 展开更多
关键词 CONCRETE PRECAST unbonded post-tensioning WALL building code performance-based evaluation force-baseddesign direct-displacement based design
下载PDF
Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
15
作者 Dai-Wen Jiang Hui Zhang +1 位作者 Bao-Chun Fan An-Hua Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期166-174,共9页
Based on the Fourier–Chebyshev spectral method, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with direct numerical simulation(DNS... Based on the Fourier–Chebyshev spectral method, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with direct numerical simulation(DNS) methods for different Reynolds numbers. A formula is derived to express the relation between fluctuating velocities and the friction drag coefficient. With the application of electromagnetic force, the in-depth relations among the fluctuating velocities near the wall, Reynolds stress, and the effect of drag reduction for different Reynolds numbers are discussed. The results indicate that the maximum drag reductions can be obtained with an optimal combination of parameters for each case of different Reynolds numbers. The fluctuating velocities along the streamwise and normal directions are suppressed significantly,while the fluctuating velocity along the spanwise direction is enhanced dramatically due to the spanwise electromagnetic force. However, the values of Reynolds stress depend on the fluctuating velocities along the streamwise and normal directions rather than that along the spanwise direction. Therefore, the significant effect of drag reduction is obtained. Moreover,the maximum drag reduction is weakened due to the decay of control effect for fluctuating velocities as the Reynolds number increases. 展开更多
关键词 FLOW control TURBULENT channel FLOW electromagnetic force direct numerical simulation
下载PDF
Volume, Side-Area, and Force Direction of Berkovich and Cubecorner Indenters, Novel Important Insights 被引量:1
16
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2021年第11期212-241,共30页
The iteration-free physical description of pyramidal indentations with closed mathematical equations is comprehensively described and extended for creating new insights in this important field of research and app... The iteration-free physical description of pyramidal indentations with closed mathematical equations is comprehensively described and extended for creating new insights in this important field of research and applications. All calculations are easily repeatable and should be programmed by instrument builders for even easier general use. Formulas for the volumes and side-areas of Berkovich and cubecorner as a function of depth are deduced and provided, as are the resulting forces and force directions. All of these allow for the detailed comparison of the different indenters on the mathematical reality. The pyramidal values differ remarkably from the ones of so-called “equivalent cones”. The worldwide use of such pseudo-cones is in severe error. The earlier claimed and used 3 times higher displaced volume with cube corner than with Berkovich is disproved. Both displace the same amount at the same applied force. The unprecedented mathematical results are experimentally confirmed for the physical indentation hardness and for the sharp-onset phase-transi</span></span><span style="white-space:normal;"><span style="font-family:"">- </span></span><span style="white-space:normal;"><span style="font-family:"">tions with calculated transition energy. The comparison of both indenters pro</span></span><span style="white-space:normal;"><span style="font-family:"">vides novel basic insights. Isotropic materials exhibit the same phase transition onset force, but the transition energy is larger with the cube corner, due to higher force and flatter force direction. This qualifies the cube</span></span><span style="white-space:normal;"><span style="font-family:""> </span></span><span style="white-space:normal;"><span style="font-family:"">corner for fracture toughness studies. Pile-up is not from the claimed “friction with the indenter”. Anisotropic materials with cleavage planes and channels undergo sliding along these</span></span><span style="white-space:normal;"><span style="font-family:""> under pressure</span></span><span style="white-space:normal;"><span style="font-family:"">, both to the surface and internally. Their volumes add to the depression volume. These volumes are essential for the exemplified pile-up management. Phase-transitions produce polymorph interfaces that are nucleation sites for cracks. Technical materials must be developed with onset forces higher than the highest thinkable stresses (at airliners, bridges</span></span><span style="white-space:normal;"><span style="font-family:"">,</span></span><span style="white-space:normal;"><span style="font-family:""> etc</span></span><span style="white-space:normal;"><span style="font-family:"">.</span></span><span style="white-space:normal;"><span style="font-family:"">). This requires urgent revision of ISO 14577-ASTM stan</span></span><span style="white-space:normal;"><span style="font-family:"">dards. 展开更多
关键词 Closed Mathematical Formulas force direction Indenter Volumes and Side-Areas Iteration-less Calculations Equal Base-Area Cones PILE-UP Phase-Transition-Onset and -Energy
下载PDF
Applying Force-Directed Placer to Wafer Scale Placement
17
作者 Ren WenjieDept of Computer Science, Changsha Inst. of Technology, Changsha, 410073, ChinaShen XubangShaanxi Microelectronics Research Institute, P.O. Box 19, Lintong 710600, P.R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1992年第4期53-60,共8页
A placement algorithm for discretionary wiring WSI system, WFDP, is proposed in this paper. WFDP employes force-directed placement algorithm. First the relative locations of macro circuit component are determined. In ... A placement algorithm for discretionary wiring WSI system, WFDP, is proposed in this paper. WFDP employes force-directed placement algorithm. First the relative locations of macro circuit component are determined. In the phase of determining the real location of the circuit component, it avoids the problem of determining the real location of arbitrary component by employing divide-conquer strategy and removing the hierarchical division. Its computation is much more simpler than other homologous algorithm. A simple model used to estimate the quality of placement is also proposed. Although the WFDP is aimed at WSI, it can also be used in the placement of other redundancy-oriented device or system such as RVLSI, etc. 展开更多
关键词 WSI PLACEMENT force-directed placement WFDP Quality measure
下载PDF
A Study on Sulfate Optical Properties and Direct Radiative Forcing Using LASG-IAP General Circulation Model 被引量:7
18
作者 李剑东 孙治安 +3 位作者 刘屹岷 李江南 王维强 吴国雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1185-1199,共15页
The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical proper... The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical properties of sulfate aerosols are also sensitive to atmospheric relative humidity, in this study we first examine the scheme for optical properties that considers hydroscopic growth. Next, we investigate the seasonal and regional distributions of sulfate DRF using the sulfate loading simulated from NCAR CAM-Chem together with the meteorology modeled from a spectral atmospheric general circulation model (AGCM) developed by LASG-IAP. The global annual-mean sulfate loading of 3.44 mg m-2 is calculated to yield the DRF of -1.03 and -0.57 W m-2 for clear-sky and all-sky conditions, respectively. However, much larger values occur on regional bases. For example, the maximum all-sky sulfate DRF over Europe, East Asia, and North America can be up to -4.0 W m-2. The strongest all-sky sulfate DRF occurs in the Northern Hemispheric July, with a hemispheric average of -1.26 W m-2. The study results also indicate that the regional DRF are strongly affected by cloud and relative humidity, which vary considerably among the regions during different seasons. This certainly raises the issue that the biases in model-sinmlated regional meteorology can introduce biases into the sulfate DRF. Hence, the model processes associated with atmospheric humidity and cloud physics should be modified in great depth to improve the simulations of the LASG-IAP AGCM and to reduce the uncertainty of sulfate direct effects on global and regional climate in these simulations. 展开更多
关键词 SULFATE optical properties direct radiative forcing atmospheric general circulation model
下载PDF
Parameter optimization for improved aerodynamic performance of louver-type wind barrier for train-bridge system 被引量:16
19
作者 HE Xu-hui FANG Dong-xu +1 位作者 LI Huan SHI Kang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期229-240,共12页
To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models... To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train. 展开更多
关键词 wind barrier aerodynamic force train-bridge system scaled wind tunnel simulation parameter optimization
下载PDF
Wing/body kinematics measurement and force and moment analyses of the takeoff flight of fruitflies 被引量:7
20
作者 Mao-Wei Chen Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期495-506,共12页
In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the meas... In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the measured data, high-speed video techniques. inertia force acting on the insect was computed and aerodynamic force and moment of the wings were calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. The following has been shown. In its voluntary takeoff, a fruitfly jumps during the first wingbeat and becomes airborne at the end of the first wingbeat. When it is in the air, the fly has a relatively large "initial" pitch-up rotational velocity (more than 5 000~/s) resulting from the jumping, but in about 5 wingbeats, the pitch-up rotation is stopped and the fly goes into a quasi-hovering flight. The fly mainly uses the force of jumping legs to lift itself into the air (the force from the flapping wings during the jumping is only about 5%-10% of the leg force). The main role played by the flapping wings in the takeoff is to produce a pitch-down moment to nullify the large "initial" pitch-up rotational velocity (otherwise, the fly would have kept pitching-up and quickly fallen down). 展开更多
关键词 Fruitfly· Takeoff flight ·Body and wing kine-matics aerodynamic and leg forces
下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部