期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental investigation on effective aerosol scavenging using different spray configurations with pre-injection of water mist for Fukushima Daiichi decommissioning
1
作者 Rui-Cong Xu Avadhesh Kumar Sharma +2 位作者 Erdal Ozdemir Shuichiro Miwa Shunichi Suzuki 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期154-172,共19页
During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris... During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris from the reactor building,the resolidified debris must be cut into smaller pieces using various cutting methods.During the cutting process,aerosol particles are expected to be generated at the submicron scale.It has been noted that such aerosols sizing within the Greenfield gap(0.1-1μm)are difficult to remove effectively using traditional spraying methods.Therefore,to improve the aerosol removal efficiency of the spray system,a new aerosol agglomeration method was recently proposed,which involves injecting water mist to enlarge the sizes of the aerosol particles before removing them using water sprays.In this study,a series of experiments were performed to clarify the proper spray configurations for effective aerosol scavenging and to improve the performance of the water mist.The experimental results showed that the spray flow rate and droplet characteristics are important factors for the aerosol-scavenging efficiency and performance of the water mist.The results obtained from this study will be helpful for the optimization of the spray system design for effective aerosol scavenging during the decommissioning of the Fukushima Daiichi plant. 展开更多
关键词 Fukushima Daiichi decommissioning aerosol scavenging Multiphase flow Spray system aerosol-mist agglomeration
下载PDF
A Review of Thermo- and Diffusio-Phoresis in the Atmospheric Aerosol Scavenging Process. Part 2: Ice Crystal and Snow Scavenging
2
作者 Gianni Santachiara Franco Prodi +1 位作者 Franco Belosi Alessia Nicosia 《Atmospheric and Climate Sciences》 2023年第4期466-477,共12页
The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which ... The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature. 展开更多
关键词 Ice Crystals Snow Crystals Ice Nucleating Particles aerosol scavenging Phoretic Forces
下载PDF
Observed Changes in Aerosol Physical and Optical Properties before and after Precipitation Events
3
作者 Xingmin LI Yan DONG +2 位作者 Zipeng DONG Chuanli DU Chuang CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第8期931-944,共14页
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical ... Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter &lt;0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter &lt;0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition. 展开更多
关键词 aerosol aerosol particle size distribution precipitation scavenging
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部