期刊文献+
共找到413,697篇文章
< 1 2 250 >
每页显示 20 50 100
Two Monte Carlo-based simulators for imaging-system modeling and projection simulation of flat-panel X-ray source
1
作者 Meng-Ke Qi Ting He +7 位作者 Yi-Wen Zhou Jing Kang Zeng-Xiang Pan Song Kang Wang-Jiang Wu Jun Chen Ling-Hong Zhou Yuan Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第7期31-46,共16页
The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res... The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms. 展开更多
关键词 Flat-panel X-ray source(FPXS) Imaging-system modeling Projection simulation Monte Carlo-based simulators
下载PDF
Simulation and application analysis of a hybrid energy storage station in a new power system
2
作者 Tianyu Zhang Xiangjun Li +2 位作者 Hanning Li Hangyu Sun Weisen Zhao 《Global Energy Interconnection》 EI CSCD 2024年第5期553-562,共10页
As the proportion of renewable energy infiltrating the power grid increases,suppressing its randomness and volatility,reducing its impact on the safe operation of the power grid,and improving the level of new energy c... As the proportion of renewable energy infiltrating the power grid increases,suppressing its randomness and volatility,reducing its impact on the safe operation of the power grid,and improving the level of new energy consumption are increasingly important.For these purposes,energy storage stations(ESS)are receiving increasing attention.This article discusses the structure,working principle,and control methods of grid-following and grid-forming energy-storage converters,which are currently commonly used.A simulation analysis was conducted to investigate their dynamic response characteristics.The advantages and disadvantages of two types of energy storage power stations are discussed,and a configuration strategy for hybrid ESS is proposed.This paper presents research on and a simulation analysis of grid-forming and grid-following hybrid energy storage systems considering two types of energy storage according to different capacity scenarios.Finally,a comparative analysis between the systems is presented.A simulation model was established using PSD-BPA(Power System Department-Bonneville Power Administration)to analyze the impact of the capacity ratio of grid-following and grid-forming ESS on their dynamic response characteristics in a hybrid ESS.In addition,a development direction for future ESSs is indicated. 展开更多
关键词 ESS Grid-forming Grid-following simulation modeling Dynamic characteristic
下载PDF
Multi-scenario Simulation of the Impact of Land Use Change on the Ecosystem Service Value in the Suzhou-Wuxi-Changzhou Metropolitan Area,China
3
作者 WANG Bin HU Chunguang ZHANG Yushuo 《Chinese Geographical Science》 SCIE CSCD 2024年第1期79-92,共14页
As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem ... As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources. 展开更多
关键词 multiple scenarios land use simulation ecosystem service value(ESV) Patch-Generating Land Use simulation(PLUS)model Suzhou-Wuxi-Changzhou(Su-Xi-Chang)metropolitan area
下载PDF
Understanding Simulated Causes of Damaging Surface Winds in a Derecho-Producing Mesoscale Convective System near the East China Coast Based on Convection-Permitting Simulations
4
作者 Liping LUO Ming XUE +3 位作者 Xin XU Lijuan LI Qiang ZHANG Ziqi FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2112-2130,共19页
A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45... A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters. 展开更多
关键词 damaging surface winds convection-permitting simulations mesoscale convective system gust front cold pool
下载PDF
Simulation and experimental comparison of the performance of four-corner-readout plastic scintillator muon-detector system
5
作者 Lie He Si-Yuan Luo +5 位作者 Xiang-Man Liu Yu-Cheng Zou Hai-Feng Zhang Wan-Cheng Xiao Yu-He Huang Xiao-Dong Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期1-12,共12页
Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The dete... Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications. 展开更多
关键词 Monte Carlo simulation Muon tomography TDOA Machine learning Image reconstruction
下载PDF
Enhancing mine groundwater system prediction:Full-process simulation of mining-induced spatio-temporal variations in hydraulic conductivities via modularized modeling
6
作者 Shihao Meng Qiang Wu +1 位作者 Yifan Zeng Leiyu Gu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第12期1625-1642,共18页
The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe develop... The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extrac-tion exerts profound effects on groundwater systems,posing a pivotal challenge for promoting green and safe development in underground engineering.To address this,a novel numerical model with an explicit coupling simulation strategy is presented.This model integrates distinct modules for individual physical mechanisms,ensuring second-order accuracy through shared time integration,thereby overcoming lim-itations in simulating mining-induced strata damage,water flow,and permeability dynamics.A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation.This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength.The mechanical model tracks permeability changes due to mining.The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning,adapt-ing to mining progress.When applied to a case study of a complex mine,this approach significantly improved the accuracy of water inflow rate predictions by 57%. 展开更多
关键词 Time-dependent permeability Overburden damage Mine water inflow Fluid-mechanical interaction Modular simulation
下载PDF
From Simulation to Reality: A Comprehensive Study on the Efficacy of a Rotating Monopolar and Bipolar Radiofrequency System through In-Silico Modeling and Pre-Clinical and Clinical Validation
7
作者 Gregorio Viera Mármol Ana Lorena Urbano Bojorge +2 位作者 Alicia Robledo Jorge José Antonio Ferrández Martínez Olalla Calvo Lozano 《Journal of Biomedical Science and Engineering》 2024年第6期107-128,共22页
Background: Skin aging is an unavoidable process aggravated by environmental agents. Among other energy devices, non-invasive radiofrequency (RF) technology is widely used for skin tightening and body contouring as it... Background: Skin aging is an unavoidable process aggravated by environmental agents. Among other energy devices, non-invasive radiofrequency (RF) technology is widely used for skin tightening and body contouring as it is simpler and more affordable than other technologies that also minimize pain and side-effects. However, most of the current RF devices do not provide automatic skin temperature control and it is difficult to achieve controlled, deep, and harmless thermal increase, so treatment performance and safety is dependent on the operator’s movements and expertise. Objective: To show the potential of numerical simulations for optimizing the design of monopolar and bipolar RF electrodes that are capable of providing homogeneous, deep and controlled heating. Materials and methods: In-silico models were developed and analyzed using Comsol Multiphysics software to simulate the RF effect produced in tissue by rotating monopolar and bipolar electrodes with different geometries from the Sculpt & Shape RF device (Sinclair, Spain), operating at frequencies of 0.5 and 1 MHz. Ex-vivo and in-vivo proof-of-concept tests were carried out to validate the simulations. Finally, treatments were performed on 16 subjects and a total of 78 body areas to assess the clinical results generated by the RF electrodes for skin tightening and body contouring. Results: In-silico studies emulated the superficial and deep dispersion of heat due to the release of RF energy into human skin tissue. The rotating electrodes (monopolar and bipolar) and the selected RF frequency (0.5 and 1 MHz) determined the homogeneity of the thermal distribution, the penetration depth (between 4.37 mm and 25.0 mm) and the heating dynamics (between 30 and 100 seconds to reach the target skin temperature), which were confirmed by ex-vivo and in-vivo tests. In addition, real treatments on facial and body areas using skin temperatures of between 43˚C and 44˚C showed consistent results with good clinical efficacy for skin tightening, circumference reduction and cellulite reduction, with no adverse effects and high subject satisfaction. Conclusions: New monopolar and bipolar RF electrodes with rotating technology have been designed and optimized using numerical simulations. The use of in-silico studies and accurate models that reproduce the thermal behavior of human biological tissues can be used to better understand RF devices and to develop superior, efficient, and safer products more quickly. 展开更多
关键词 Comsol Multiphysics simulations Radiofrequency Skin Tightening Fat Reduction Body Contouring CELLULITE
下载PDF
Dynamic simulation of differential accumulation history of deep marine oil and gas in superimposed basin:A case study of Lower Paleozoic petroleum system of Tahe Oilfield,Tarim Basin,NW China
8
作者 LI Bin ZHONG Li +4 位作者 LYU Haitao YANG Suju XU Qinqi ZHANG Xin ZHENG Binsong 《Petroleum Exploration and Development》 SCIE 2024年第5期1217-1231,共15页
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p... According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin. 展开更多
关键词 superimposed basin Tarim Basin marine carbonate rock oil and gas differential accumulation dynamic accumulation simulation fluid potential technology Tahe Oilfield Lower Paleozoic petroleum system simulation deep and ultra-deep strata
下载PDF
Complex adaptive system theory,agent-based modeling,and simulation in dominant technology formation
9
作者 ZHANG Ruihan SUN Bing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期130-153,共24页
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i... Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies. 展开更多
关键词 complex adaptive system theory agent-based modeling and simulation dominant technology socio-technical landscape adaptation-choice
下载PDF
Chemical simulation teaching system based on virtual reality and gesture interaction
10
作者 Dengzhen LU Hengyi LI +2 位作者 Boyu QIU Siyuan LIU Shuhan QI 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期148-168,共21页
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ... Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education. 展开更多
关键词 Chemical experiment simulation Gesture interaction Virtual reality Model establishment Process control Streaming media DATABASE
下载PDF
A review of interaction mechanisms and microscopic simulation methods for CO_(2)-water-rock system
11
作者 ZHANG Liehui ZHANG Tao +6 位作者 ZHAO Yulong HU Haoran WEN Shaomu WU Jianfa CAO Cheng WANG Yongchao FAN Yunting 《Petroleum Exploration and Development》 SCIE 2024年第1期223-238,共16页
This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscop... This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscopic simulations of CO_(2)-water-rock system.The work points out the key issues in current research and provides suggestions for future research.After injection of CO_(2) into underground reservoirs,not only conventional pressure-driven flow and mass transfer processes occur,but also special physicochemical phenomena like dissolution,precipitation,and precipitate migration.The coupling of these processes causes complex changes in permeability and porosity parameters of the porous media.Pore-scale microscopic flow simulations can provide detailed information within the three-dimensional pore and throat space and explicitly observe changes in the fluid-solid interfaces of porous media during reactions.At present,the research has limitations in the decoupling of complex mechanisms,characterization of differential multi-mineral reactions,precipitation generation mechanisms and characterization(crystal nucleation and mineral detachment),simulation methods for precipitation-fluid interaction,and coupling mechanisms of multiple physicochemical processes.In future studies,it is essential to innovate experimental methods to decouple“dissolution-precipitation-precipitate migration”processes,improve the accuracy of experimental testing of minerals geochemical reaction-related parameters,build reliable characterization of various precipitation types,establish precipitation-fluid interaction simulation methods,coordinate the boundary conditions of different physicochemical processes,and,finally,achieve coupled flow simulation of“dissolution-precipitation-precipitate migration”within CO_(2)-water-rock systems. 展开更多
关键词 CO_(2)-water-rock DISSOLUTION PRECIPITATION precipitate migration microscopic simulation CO_(2)capture utilization and storage carbon neutrality decouple
下载PDF
基于Plant Simulation仿真技术的装配生产线优化研究
12
作者 崔俊杰 马臻 郭海青 《南方农机》 2025年第2期145-149,共5页
【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增... 【目的】优化装备生产线,缩短产品交付周期。【方法】基于Plant Simulation仿真技术,对装配生产线进行建模、编程、仿真、分析和优化,有效计算产品产量和成本,识别并优化装配生产线的瓶颈工位。【结果】优化后的三维产线仿真模型产量增幅接近10%,生产效率明显提升。【结论】通过将智能制造技能竞赛和科研教学活动相结合,能够凝练总结竞赛内容,促使教师紧盯前沿知识,创新改革教学内容,实现以赛促教、以赛促学、以赛促改、以赛促建的多重目标。 展开更多
关键词 Plant simulation仿真技术 生产优化 瓶颈工位
下载PDF
Design and Numerical Simulation of Dust Removal System for Sutomotive Iongitudinal Beam Plasma Cutting
13
作者 Wenqiang GAO Xudong MA Heyu TIAN 《Mechanical Engineering Science》 2024年第1期30-34,共5页
To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust remova... To improve the poor efficiency of the dust removal system in the plasma cutting station of automotive longitudinal beams,and reduce the cutting surface quality degradation due to dust,a bottom-side suction dust removal system is designed,and the dust removal effect is optimized through the setting of the following dampers and diversion plates.The result of numerical simulation indicates that the particle collection rate can reach 99.44%,and the field test also proves the effectiveness of the dust removal system,which is of guiding significance for the transformation of other similar dust removal systems. 展开更多
关键词 plasma cutting dust removal equipment simulation
下载PDF
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
14
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
下载PDF
Construction of a Virtual Simulation Practice Teaching System of the Chemical Industry Under the Background of Integration of Production and Education
15
作者 Lixia Wang 《Journal of Contemporary Educational Research》 2024年第5期103-109,共7页
With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation pract... With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization. 展开更多
关键词 Integration of production and education Chemical virtual simulation practice Teaching system
下载PDF
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
16
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
17
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
下载PDF
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
18
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 Embedded linear friction welding Plastic flow Interfacial bonding behavior Numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
SolarDesign:An online photovoltaic device simulation and design platform
19
作者 Wei E.I.Sha Xiaoyu Wang +8 位作者 Wenchao Chen Yuhao Fu Lijun Zhang Liang Tian Minshen Lin Shudi Jiao Ting Xu Tiange Sun Dongxue Liu 《Chinese Physics B》 2025年第1期135-141,共7页
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ... Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration. 展开更多
关键词 photovoltaic device simulation silicon solar cells organic and perovskite solar cells multi-physics and circuit simulation
下载PDF
Design of insulation support system of 120 keV positive ion source accelerator
20
作者 Wen DENG Yahong XIE +5 位作者 Yuming GU Yunfei JIANG Longbin LIU Fang WANG Jianglong WEI Chundong HU 《Plasma Science and Technology》 2025年第1期128-133,共6页
In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion s... In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined. 展开更多
关键词 positive ion source ACCELERATOR insulation support system electrostatic simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部