Ag(Nb0.8Ta0.2)O3 ceramics were prepared by the traditional solid-state reaction method. The effect of CaF2 addition on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated. The add...Ag(Nb0.8Ta0.2)O3 ceramics were prepared by the traditional solid-state reaction method. The effect of CaF2 addition on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated. The addition of CaF2 led the ceramics to a larger grain size and distortion of lattice. With the addition of 4.5 wt.% CaF2, the permittivity of the ceramics increased from 442 to 1028, the dielectric loss decreased sharply from 6.12 × 10^-3 to 8.6 × 10^-4, and the temperature coefficient of capacitance decreased from 1834 ppm/℃ to -50 ppm/℃ (at 1 MHz). These results indicated that the high permittivity was related with a large grain size, a low grain boundary density, and the weak Ta-O or Nb-O bond strength caused by the addition of CaF2.展开更多
Different ambient conditions for the synthesis of Ag(Nb0.8Ta0.2)O3 ceramics were investi- gated. The Ag(Nb0.8Ta0.2)O3 powder was synthesized at 950 ℃ under different ambient conditions, and then pressed into disk...Different ambient conditions for the synthesis of Ag(Nb0.8Ta0.2)O3 ceramics were investi- gated. The Ag(Nb0.8Ta0.2)O3 powder was synthesized at 950 ℃ under different ambient conditions, and then pressed into disks and sintered between 1060 ℃ and 1100 ℃ respectively. Samples were investigated by X-ray diffraction, scanning electron microscopy and dielectric measurement. The results show that perovskite Ag(Nb0.8Ta0.2)O3 powder was easier to be synthesized in air than in vacuum at 950℃. Grain size of ceramic samples sintered in air was uniform (about 1 μm) and its dielectric loss was small for its high density. However, the samples decomposed greatly and ceramics could hardly be densified when sintered in vacuum, Thus,. higher atmospheric pressure and oxygen atmosphere would benifit the synthesis of Ag (Nb0.8Ta0.2)O3, and suppress its decomposition at high temperature.展开更多
选择具有双钙钛矿结构的Sr2Fe Nb O6(SFN)及La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)材料混合作为固体氧化物电解池(SOEC)的阴极,在SFN-LSGM中掺杂不同比例的淀粉,经过干压成型并在1400℃下烧结后得到测试样。利用真实密度仪及阿基米德法测定...选择具有双钙钛矿结构的Sr2Fe Nb O6(SFN)及La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)材料混合作为固体氧化物电解池(SOEC)的阴极,在SFN-LSGM中掺杂不同比例的淀粉,经过干压成型并在1400℃下烧结后得到测试样。利用真实密度仪及阿基米德法测定了样品的孔隙率;利用热分析仪测定了不同孔隙率的样品在35~1400℃条件下的热膨胀系数,研究该材料与常用SOEC电解质材料La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)的热匹配性能;之后利用电化学工作站测试了该材料在纯氢气气氛下电导率与孔隙率的关系。结果表明,样品孔隙率与淀粉掺杂量成正比,孔隙率对该材料热膨胀系数影响不大,且该材料与LSGM电解池热匹配性能良好。另外,当样品孔隙率增加时,该材料在850℃纯氢气气氛下的电导率在18%孔隙率时达到最大值。展开更多
基金supported by the Program for New Century Excellent Talents in Universities (NCET)the National High-Tech Research and Development Program of China (No. 2007AA03Z423)China Postdoctoral Science Foundation
文摘Ag(Nb0.8Ta0.2)O3 ceramics were prepared by the traditional solid-state reaction method. The effect of CaF2 addition on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated. The addition of CaF2 led the ceramics to a larger grain size and distortion of lattice. With the addition of 4.5 wt.% CaF2, the permittivity of the ceramics increased from 442 to 1028, the dielectric loss decreased sharply from 6.12 × 10^-3 to 8.6 × 10^-4, and the temperature coefficient of capacitance decreased from 1834 ppm/℃ to -50 ppm/℃ (at 1 MHz). These results indicated that the high permittivity was related with a large grain size, a low grain boundary density, and the weak Ta-O or Nb-O bond strength caused by the addition of CaF2.
基金SUPPORTED BY NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA( NO. 50402011 ).
文摘Different ambient conditions for the synthesis of Ag(Nb0.8Ta0.2)O3 ceramics were investi- gated. The Ag(Nb0.8Ta0.2)O3 powder was synthesized at 950 ℃ under different ambient conditions, and then pressed into disks and sintered between 1060 ℃ and 1100 ℃ respectively. Samples were investigated by X-ray diffraction, scanning electron microscopy and dielectric measurement. The results show that perovskite Ag(Nb0.8Ta0.2)O3 powder was easier to be synthesized in air than in vacuum at 950℃. Grain size of ceramic samples sintered in air was uniform (about 1 μm) and its dielectric loss was small for its high density. However, the samples decomposed greatly and ceramics could hardly be densified when sintered in vacuum, Thus,. higher atmospheric pressure and oxygen atmosphere would benifit the synthesis of Ag (Nb0.8Ta0.2)O3, and suppress its decomposition at high temperature.
文摘选择具有双钙钛矿结构的Sr2Fe Nb O6(SFN)及La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)材料混合作为固体氧化物电解池(SOEC)的阴极,在SFN-LSGM中掺杂不同比例的淀粉,经过干压成型并在1400℃下烧结后得到测试样。利用真实密度仪及阿基米德法测定了样品的孔隙率;利用热分析仪测定了不同孔隙率的样品在35~1400℃条件下的热膨胀系数,研究该材料与常用SOEC电解质材料La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)的热匹配性能;之后利用电化学工作站测试了该材料在纯氢气气氛下电导率与孔隙率的关系。结果表明,样品孔隙率与淀粉掺杂量成正比,孔隙率对该材料热膨胀系数影响不大,且该材料与LSGM电解池热匹配性能良好。另外,当样品孔隙率增加时,该材料在850℃纯氢气气氛下的电导率在18%孔隙率时达到最大值。