Ag/TiO2/freeze-dried graphene nanocomposites have been prepared via a facile one-step solvothermal method for the photocatalytic degradation of Rh B under visible light irradiation. During the solvothermal process, re...Ag/TiO2/freeze-dried graphene nanocomposites have been prepared via a facile one-step solvothermal method for the photocatalytic degradation of Rh B under visible light irradiation. During the solvothermal process, reduction of graphene oxide and loading of Ag/TiO2nanoparticles on graphene sheets were achieved. Investigation of chemical state of products showed that covering of Ag/TiO2surface with higher weight ratio of graphene resulting in that Ag metals in Ag/TiO2were oxidized to Ag2 O in nanocomposite structure after solvothermal process. Degree of photocatalytic activity enhancement strongly depends on the coverage of Ag/TiO2surface by porous graphene. The sample of 1 wt% porous graphene hybridized Ag/TiO2showed the highest photocatalytic activity, which is related to high migration efficiency of photoinduced of electrons and reduction of electron–hole recombination rate due to high electrical conductivity of graphene. Expanding of absorption to visible light region was ascribed to surface plasmon resonance effect of Ag metals and presence of graphene. Investigation of photocatalytic performance of formic acid as a dye-less organic pollutant showed that dye sensitization effect of Rh B molecules during evaluation of photocatalytic performance was negligible.展开更多
文摘Ag/TiO2/freeze-dried graphene nanocomposites have been prepared via a facile one-step solvothermal method for the photocatalytic degradation of Rh B under visible light irradiation. During the solvothermal process, reduction of graphene oxide and loading of Ag/TiO2nanoparticles on graphene sheets were achieved. Investigation of chemical state of products showed that covering of Ag/TiO2surface with higher weight ratio of graphene resulting in that Ag metals in Ag/TiO2were oxidized to Ag2 O in nanocomposite structure after solvothermal process. Degree of photocatalytic activity enhancement strongly depends on the coverage of Ag/TiO2surface by porous graphene. The sample of 1 wt% porous graphene hybridized Ag/TiO2showed the highest photocatalytic activity, which is related to high migration efficiency of photoinduced of electrons and reduction of electron–hole recombination rate due to high electrical conductivity of graphene. Expanding of absorption to visible light region was ascribed to surface plasmon resonance effect of Ag metals and presence of graphene. Investigation of photocatalytic performance of formic acid as a dye-less organic pollutant showed that dye sensitization effect of Rh B molecules during evaluation of photocatalytic performance was negligible.