Tin(IV)oxide(Sn_(3)O_(4))is layered tin and exhibits mixed valence states.It has emerged as a highly promising visible-light pho-tocatalyst,attracting considerable attention.This comprehensive review is aimed at provi...Tin(IV)oxide(Sn_(3)O_(4))is layered tin and exhibits mixed valence states.It has emerged as a highly promising visible-light pho-tocatalyst,attracting considerable attention.This comprehensive review is aimed at providing a detailed overview of the latest advance-ments in research,applications,advantages,and challenges associated with Sn_(3)O_(4)photocatalytic nanomaterials.The fundamental con-cepts and principles of Sn_(3)O_(4)are introduced.Sn_(3)O_(4)possesses a unique crystal structure and optoelectronic properties that allow it to ab-sorb visible light efficiently and generate photoexcited charge carriers that drive photocatalytic reactions.Subsequently,strategies for the control and improved performance of Sn_(3)O_(4)photocatalytic nanomaterials are discussed.Morphology control,ion doping,and hetero-structure construction are widely employed in the optimization of the photocatalytic performance of Sn_(3)O_(4)materials.The effective imple-mentation of these strategies improves the photocatalytic activity and stability of Sn_(3)O_(4)nanomaterials.Furthermore,the review explores the diverse applications of Sn_(3)O_(4)photocatalytic nanomaterials in various fields,such as photocatalytic degradation,photocatalytic hydro-gen production,photocatalytic reduction of carbon dioxide,solar cells,photocatalytic sterilization,and optoelectronic sensors.The discus-sion focuses on the potential of Sn_(3)O_(4)-based nanomaterials in these applications,highlighting their unique attributes and functionalities.Finally,the review provides an outlook on the future development directions in the field and offers guidance for the exploration and de-velopment of novel and efficient Sn_(3)O_(4)-based nanomaterials.Through the identification of emerging research areas and potential avenues for improvement,this review aims to stimulate further advancements in Sn_(3)O_(4)-based photocatalysis and facilitate the translation of this promising technology into practical applications.展开更多
Tuning metal-support interactions(MSIs)is an important strategy in heterogeneous catalysis to realize the desirable metal dispersion and redox ability of metal catalysts.Herein,we use pre-reduced Co_(3)O_(4)nanowires(...Tuning metal-support interactions(MSIs)is an important strategy in heterogeneous catalysis to realize the desirable metal dispersion and redox ability of metal catalysts.Herein,we use pre-reduced Co_(3)O_(4)nanowires(Co-NWs)in situ grown on monolithic Ni foam substrates to support Ag catalysts(Ag/Co-NW-R)for soot combustion.The macroporous structure of Ni foam with crossed Co_(3)O_(4)nanowires remarkably increases the soot-catalyst contact effi ciency.Our characterization results demonstrate that Ag species exist as Ag 0 because of the equation Ag^(+)+Co^(2+)=Ag^(0)+Co^(3+),and the pre-reduction treatment enhances interactions between Ag and Co_(3)O_(4).The number of active oxygen species on the Ag-loaded catalysts is approximately twice that on the supports,demonstrating the signifi cant role of Ag sites in generating active oxygen species.Additionally,the strengthened MSI on Ag/Co-NW-R further improves this number by increasing metal dispersion and the intrinsic activity determined by the turnover frequency of these oxygen species for soot oxidation compared with the catalyst without pre-reduction of Co-NW(Ag/Co-NW).In addition to high activity,Ag/Co-NW-R exhibits high catalytic stability and water resistance.The strategy used in this work might be applicable in related catalytic systems.展开更多
Silver(9 wt.%)was loaded on Co_(3)O_(4)-nanofiber using reduction and impregnation methods,respectively.Due to the stronger electronegativity of silver,the ratios of surface Co^(3+)/Co^(2+) on Ag/Co_(3)O_(4) were high...Silver(9 wt.%)was loaded on Co_(3)O_(4)-nanofiber using reduction and impregnation methods,respectively.Due to the stronger electronegativity of silver,the ratios of surface Co^(3+)/Co^(2+) on Ag/Co_(3)O_(4) were higher than on Co_(3)O_(4),which further led to more adsorbed oxygen species as a result of the charge compensation.Moreover,the introducing of silver also obviously improved the reducibility of Co_(3)O_(4).Hence the Ag/Co_(3)O_(4) showed better catalytic performance than Co_(3)O_(4) in benzene oxidation.Compared with the Ag/Co_(3)O_(4) synthesized via impregnation method,the one prepared using reduction method(named as Ag Co-R)exhibited higher contents of surface Co^(3+) and adsorbed oxygen species,stronger reducibility,as well as more active surface lattice oxygen species.Consequently,Ag Co-R showed lowest T_(90) value of 183℃,admirable catalytic stability,largest normalized reaction rate of1.36×10^(-4)mol/(h·m^(2))(150℃),and lowest apparent activation energy(E_(a))of 63.2 kJ/mol.The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol,o-benzoquinone,small molecular intermediates,and finally to CO_(2) and water on the surface of Ag Co-R.At last,potential reaction pathways including five detailed steps were proposed.展开更多
基金the National Natural Science Foundation of China(No.52272212)the Natural Science Foundation of Shandong Province(Nos.ZR2022JQ20 and ZR2023MB126)+2 种基金the Taishan Scholar Project of Shandong Province(No.tsqn202211168)the Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science,MOE(No.M2022-7)the STIEI scientific research funding project(No.GCC2023036).
文摘Tin(IV)oxide(Sn_(3)O_(4))is layered tin and exhibits mixed valence states.It has emerged as a highly promising visible-light pho-tocatalyst,attracting considerable attention.This comprehensive review is aimed at providing a detailed overview of the latest advance-ments in research,applications,advantages,and challenges associated with Sn_(3)O_(4)photocatalytic nanomaterials.The fundamental con-cepts and principles of Sn_(3)O_(4)are introduced.Sn_(3)O_(4)possesses a unique crystal structure and optoelectronic properties that allow it to ab-sorb visible light efficiently and generate photoexcited charge carriers that drive photocatalytic reactions.Subsequently,strategies for the control and improved performance of Sn_(3)O_(4)photocatalytic nanomaterials are discussed.Morphology control,ion doping,and hetero-structure construction are widely employed in the optimization of the photocatalytic performance of Sn_(3)O_(4)materials.The effective imple-mentation of these strategies improves the photocatalytic activity and stability of Sn_(3)O_(4)nanomaterials.Furthermore,the review explores the diverse applications of Sn_(3)O_(4)photocatalytic nanomaterials in various fields,such as photocatalytic degradation,photocatalytic hydro-gen production,photocatalytic reduction of carbon dioxide,solar cells,photocatalytic sterilization,and optoelectronic sensors.The discus-sion focuses on the potential of Sn_(3)O_(4)-based nanomaterials in these applications,highlighting their unique attributes and functionalities.Finally,the review provides an outlook on the future development directions in the field and offers guidance for the exploration and de-velopment of novel and efficient Sn_(3)O_(4)-based nanomaterials.Through the identification of emerging research areas and potential avenues for improvement,this review aims to stimulate further advancements in Sn_(3)O_(4)-based photocatalysis and facilitate the translation of this promising technology into practical applications.
基金supported by the National Natu-ral Science Foundation of China(Nos.21878213,21808211)the open foundation of the State Key Laboratory of Chemical Engineer-ing(SKL-ChE-20B01)Authors are also grateful to the Program of Introducing Talents of Disciplines to China Universities(BP0618007).
文摘Tuning metal-support interactions(MSIs)is an important strategy in heterogeneous catalysis to realize the desirable metal dispersion and redox ability of metal catalysts.Herein,we use pre-reduced Co_(3)O_(4)nanowires(Co-NWs)in situ grown on monolithic Ni foam substrates to support Ag catalysts(Ag/Co-NW-R)for soot combustion.The macroporous structure of Ni foam with crossed Co_(3)O_(4)nanowires remarkably increases the soot-catalyst contact effi ciency.Our characterization results demonstrate that Ag species exist as Ag 0 because of the equation Ag^(+)+Co^(2+)=Ag^(0)+Co^(3+),and the pre-reduction treatment enhances interactions between Ag and Co_(3)O_(4).The number of active oxygen species on the Ag-loaded catalysts is approximately twice that on the supports,demonstrating the signifi cant role of Ag sites in generating active oxygen species.Additionally,the strengthened MSI on Ag/Co-NW-R further improves this number by increasing metal dispersion and the intrinsic activity determined by the turnover frequency of these oxygen species for soot oxidation compared with the catalyst without pre-reduction of Co-NW(Ag/Co-NW).In addition to high activity,Ag/Co-NW-R exhibits high catalytic stability and water resistance.The strategy used in this work might be applicable in related catalytic systems.
基金supported by the National Natural Science Foundation of China(No.22176123)the Natural Science Foundation of Xinjiang(Nos.2020D01C021,2021D01C036)the National Natural Science Foundation of China-Xinjiang Joint Fund(No.U2003123)。
文摘Silver(9 wt.%)was loaded on Co_(3)O_(4)-nanofiber using reduction and impregnation methods,respectively.Due to the stronger electronegativity of silver,the ratios of surface Co^(3+)/Co^(2+) on Ag/Co_(3)O_(4) were higher than on Co_(3)O_(4),which further led to more adsorbed oxygen species as a result of the charge compensation.Moreover,the introducing of silver also obviously improved the reducibility of Co_(3)O_(4).Hence the Ag/Co_(3)O_(4) showed better catalytic performance than Co_(3)O_(4) in benzene oxidation.Compared with the Ag/Co_(3)O_(4) synthesized via impregnation method,the one prepared using reduction method(named as Ag Co-R)exhibited higher contents of surface Co^(3+) and adsorbed oxygen species,stronger reducibility,as well as more active surface lattice oxygen species.Consequently,Ag Co-R showed lowest T_(90) value of 183℃,admirable catalytic stability,largest normalized reaction rate of1.36×10^(-4)mol/(h·m^(2))(150℃),and lowest apparent activation energy(E_(a))of 63.2 kJ/mol.The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol,o-benzoquinone,small molecular intermediates,and finally to CO_(2) and water on the surface of Ag Co-R.At last,potential reaction pathways including five detailed steps were proposed.