ZnO nanostructures were prepared on corning glass substrate by flow coating process with different annealing temperature from 100?C to 600?C. Fresh and two days aged solutions were used to investigate the growth behav...ZnO nanostructures were prepared on corning glass substrate by flow coating process with different annealing temperature from 100?C to 600?C. Fresh and two days aged solutions were used to investigate the growth behavior and to evaluate the nanostructure of ZnO. The effect of preparation conditions on the deposition of ZnO nanostructure was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, and photoluminescence spectroscopy (PL). The results indicated that the solution aging condition and annealing temperature have a strong influence on the morphology and structural properties of the ZnO nanostructure. The solution aged after two days shows the different morphologies compared with the freshly prepared solution.展开更多
The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters we...The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.展开更多
Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limit...Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limitation of the light-mater interaction within the photoactive layers.Here,we demonstrate high-performance Al NS/ZnO quantum dots(Al/ZnO) heterostructure UV photodetectors with controllable morphologies of the self-assembled Al NSs.The Al/ZnO heterostructures exhibit a superior light utilization than the ZnO/Al heterostructures,and a strong morphological dependence of the Al NSs on the optical properties of the heterostructures.The inter-diffusion of Al atoms into ZnO matrixes is of a great benefit for the carrier transportation.Consequently,the optimal photocurrent of the Al/ZnO heterostructure photodetectors is significantly increased by 275 times to ~1.065 mA compared to that of the pristine ZnO device,and an outstanding photoresponsivity of 11.98 A W-1 is correspondingly achieved under 6.9 MW cm-2 UV light illumination at 10 V bias.In addition,a relatively fast response is similarly witnessed with the Al/ZnO devices,paving a path to fabricate the high-performance UV photodetectors for applications.展开更多
This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarize...This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragglike grating is formed by moving the sample at a speed of 10μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.展开更多
A series of ZnO nanostructures such as nanowires,nanobelts,nanocombs and mesoporous nanoballs were fabricated by a simple carbon reduction method without catalyst.The morphologies and microstructures of all samples we...A series of ZnO nanostructures such as nanowires,nanobelts,nanocombs and mesoporous nanoballs were fabricated by a simple carbon reduction method without catalyst.The morphologies and microstructures of all samples were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and energy dispersive X-ray spectroscopy.The results indicate that different deposition temperatures have great impact on different shapes of ZnO nanostructures.The growth mechanisms of these ZnO nanostructrues suggest that,by controlling the experiment parameters,different morphological configurations nanostructures can be fabricated.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures ...Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.展开更多
The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag...The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag powders over the temperature range from 393 to 453 K. The electrical resistance measurements of the nanostructured Ag bulk samples obtained by compacting the Ag powders after heat treatments showed a change in the sign of a with dP and dc. When dp and dc are smaller or equal to 18 and 11 nm below room temperature or 20 and 12 nm above room temperature, respectively, the sign of the temperature coefficient of resistivity changes from positive to negative. The negative a arises mainly from the high resistivity induced by the particle interfaces with very lowly ordered or even disordered structure, a large volume fraction of interfaces and impurities existing in the interfaces, and the quantum size effect appearing in the nano-Ag grains.展开更多
A solution method was developed for fabricating ZnO nanostructures using (NH4)2CO3 as starting material SEM analysis shows that ZnO nanostructures exhibit nanorod, branch and flower-like morphologies. The crystal ph...A solution method was developed for fabricating ZnO nanostructures using (NH4)2CO3 as starting material SEM analysis shows that ZnO nanostructures exhibit nanorod, branch and flower-like morphologies. The crystal phase of as-synthesized products was characterized by X-ray diffraction (XRD). The growth process, formation mechanism and optical property were also discussed by means of transmission electronic microscopy (TEM), high resolution transmission microscopy (HRTEM) and photoluminescence (PL). The growth direction of ZnO nanostructures was investigated based on the results of HRTEM. The PL spectrum shows two strong peaks (centered at around -387 and -470 nm) and a broad Deak (centered at around -580 nm).展开更多
Nanostructural zinc oxide films have been synthesized via vapor phase growthby heating pure zinc powder. Scanning electron microscopy ( SEM) images and X-ray diffraction (XRD)results showed that four kinds of morpholo...Nanostructural zinc oxide films have been synthesized via vapor phase growthby heating pure zinc powder. Scanning electron microscopy ( SEM) images and X-ray diffraction (XRD)results showed that four kinds of morphologies ZnO nanostructures namely nanowires, well-alignednanorods, nanofeathers and hexagonal nano-rods were formed and all of wurtzite structural crystals.The results indicated that the temperature and substrate play an important role in the formation ofdifferent morphologies of ZnO nanostructures. The photoluminescence (PL) measurement was carried outfor the well-aligned nanorods ZnO sample and blue emission peaks at 420 and 444 nm have beenobserved at room temperature. And the blue emission mechanism is discussed.展开更多
Diesel soot subjected to high exhaust temperature suffers from thermal ageing,which is difficult to be removed by regeneration process.Based on the thermogravimetric(TG)analysis and images by high resolution transmiss...Diesel soot subjected to high exhaust temperature suffers from thermal ageing,which is difficult to be removed by regeneration process.Based on the thermogravimetric(TG)analysis and images by high resolution transmission electron microscope(HRTEM),effects of thermal ageing temperature,ageing time and oxygen concentration on oxidation characteristic of soot are investigated.The activation energy of soot increases with the increase of ageing temperature and oxygen concentration.The activation energy increases rapidly when the ageing time is less than 45 min,and then it keeps in a value of 157 kJ/mol when the ageing time is between 45 and 60 min.Compared to the soot without thermal ageing,the shape of ageing soot particles presents shorter diameter and more regular circle by observing soot nanostructure.With the increase of ageing temperature,ageing time and oxygen concentration,the more stable structure of“shell and core”is shown in the basic carbon.The soot has an increased fringe length,decreased tortuosity and separation distance after thermal ageing process,which leads to the deepening of the disorder degree of soot nanostructures and reduction of soot oxidation activity.Consequently,the thermal ageing process should be avoided in order to optimize the active regeneration strategy.展开更多
ZnO was prepared by hydrothermal method. The result of scanning electron microscopy showed that the materials had nano rod structures. Ag-doped ZnO was prepared by UV-photoreduction. Crystalline phases and optical abs...ZnO was prepared by hydrothermal method. The result of scanning electron microscopy showed that the materials had nano rod structures. Ag-doped ZnO was prepared by UV-photoreduction. Crystalline phases and optical absorption of the prepared Ag-doped ZnO samples were determined by X-ray diffraction, Raman spectrum, UV-visible, and UV- photoreduction spectrophotometer. X-ray analyses revealed that Ag was doped ZnO crystallizes in hexagonal wurtzite structure. The incorporation of Ag+ in the site of Zn2+ provoked an increase in the size of nanocrystals as compared to pure ZnO. The photocatalytic and photoluminescence properties of materials were considered.展开更多
We report the systematic changes of nano-scaled features and optical properties in a promising transparent oxide material, namely, Alx (x = 0, 1, 2 and 5%) doped ZnO1-x (AZO). Electron microscopy investigations reveal...We report the systematic changes of nano-scaled features and optical properties in a promising transparent oxide material, namely, Alx (x = 0, 1, 2 and 5%) doped ZnO1-x (AZO). Electron microscopy investigations revealed the alterations at lattice scale depending on the presence of Al-content in ZnO nanostructures. Lattice spacings of 0.26 and 0.28 nm oriented along the (0002) and (10 0) planes, respectively, were attributed to euhedral-and facetted-structures of hexagonal-ZnO. The AZO samples were further characterized by XRD, SEM, UV-vis spectrophotometry, Raman spectroscopy and photoluminescence studies. It has been shown that at a dopant concentration of 2%Al in ZnO, an optimal balance could be achieved between microstructure and optical properties.展开更多
Zinc Oxide (ZnO) nanostructure were synthesized by precipitating Zinc Chloride and analyzed structurally and optically. Samples were prepared at different thickness (62, 66, 74, 86, 92, and 110 nm), and substrate ...Zinc Oxide (ZnO) nanostructure were synthesized by precipitating Zinc Chloride and analyzed structurally and optically. Samples were prepared at different thickness (62, 66, 74, 86, 92, and 110 nm), and substrate temperature kept at 400 ℃ in all cases. Compressed Nitrogen was used as a cartier gas. The samples of the ZnO films were characterized by X-ray diffraction (XRD), and atomic force microscopy (AFM). The XRD results indicated that the synthesized ZnO thin films have a pure wurtzite (hexagonal phase) structure. It can be seen that the highest texture coefficient was in (002) plan for nanostructure films. AFM measurement showed the grain size ranging from 62-86 nm. The optical band gap energy (Ee,) of ZnO nanostructure have two values for the same sample and the Eg decrease with increasing thickness utilizing the optical data using UV-Vis spectrophotometer.展开更多
Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and ...Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed.展开更多
文摘ZnO nanostructures were prepared on corning glass substrate by flow coating process with different annealing temperature from 100?C to 600?C. Fresh and two days aged solutions were used to investigate the growth behavior and to evaluate the nanostructure of ZnO. The effect of preparation conditions on the deposition of ZnO nanostructure was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, and photoluminescence spectroscopy (PL). The results indicated that the solution aging condition and annealing temperature have a strong influence on the morphology and structural properties of the ZnO nanostructure. The solution aged after two days shows the different morphologies compared with the freshly prepared solution.
基金Project (2012CB932800) supported by the National Basic Research Program of ChinaProject (2012M521330) supported by China Postdoctoral Science Foundation
文摘The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications.
基金the National Natural Science Foundation of China(Grant Nos.61705070 and 61974052)China Postdoctoral Science Foundation(Grant Nos.2019M662594)National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIP)(Nos.NRF2019R1A2C4069438 and NRF2018R1A6A1A03025242)。
文摘Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limitation of the light-mater interaction within the photoactive layers.Here,we demonstrate high-performance Al NS/ZnO quantum dots(Al/ZnO) heterostructure UV photodetectors with controllable morphologies of the self-assembled Al NSs.The Al/ZnO heterostructures exhibit a superior light utilization than the ZnO/Al heterostructures,and a strong morphological dependence of the Al NSs on the optical properties of the heterostructures.The inter-diffusion of Al atoms into ZnO matrixes is of a great benefit for the carrier transportation.Consequently,the optimal photocurrent of the Al/ZnO heterostructure photodetectors is significantly increased by 275 times to ~1.065 mA compared to that of the pristine ZnO device,and an outstanding photoresponsivity of 11.98 A W-1 is correspondingly achieved under 6.9 MW cm-2 UV light illumination at 10 V bias.In addition,a relatively fast response is similarly witnessed with the Al/ZnO devices,paving a path to fabricate the high-performance UV photodetectors for applications.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No T0104)the Shanghai Nano-technology Promotion Center and Science & Technology of Shanghai Municipality (Grant No 0652nm005)Innovation Fund of Shanghai University,China
文摘This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragglike grating is formed by moving the sample at a speed of 10μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal.
基金The project is financially supported by National Natural Science Foundation of China (No50531020)
文摘A series of ZnO nanostructures such as nanowires,nanobelts,nanocombs and mesoporous nanoballs were fabricated by a simple carbon reduction method without catalyst.The morphologies and microstructures of all samples were characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and energy dispersive X-ray spectroscopy.The results indicate that different deposition temperatures have great impact on different shapes of ZnO nanostructures.The growth mechanisms of these ZnO nanostructrues suggest that,by controlling the experiment parameters,different morphological configurations nanostructures can be fabricated.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
文摘Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.
基金the National Natural Science FOundation of China under grant! No.19974041the National Major Fundamental ResearCh Program-Nal
文摘The change of the temperature coefficient of resistivity (a) with the particle size, dp, and the grain size, dc, in the nanostructured Ag bulk samples was investigated. dp and dc were controlled by heating the nano-Ag powders over the temperature range from 393 to 453 K. The electrical resistance measurements of the nanostructured Ag bulk samples obtained by compacting the Ag powders after heat treatments showed a change in the sign of a with dP and dc. When dp and dc are smaller or equal to 18 and 11 nm below room temperature or 20 and 12 nm above room temperature, respectively, the sign of the temperature coefficient of resistivity changes from positive to negative. The negative a arises mainly from the high resistivity induced by the particle interfaces with very lowly ordered or even disordered structure, a large volume fraction of interfaces and impurities existing in the interfaces, and the quantum size effect appearing in the nano-Ag grains.
基金Funded by the Ministry of Education of China (PCSIRT0644)
文摘A solution method was developed for fabricating ZnO nanostructures using (NH4)2CO3 as starting material SEM analysis shows that ZnO nanostructures exhibit nanorod, branch and flower-like morphologies. The crystal phase of as-synthesized products was characterized by X-ray diffraction (XRD). The growth process, formation mechanism and optical property were also discussed by means of transmission electronic microscopy (TEM), high resolution transmission microscopy (HRTEM) and photoluminescence (PL). The growth direction of ZnO nanostructures was investigated based on the results of HRTEM. The PL spectrum shows two strong peaks (centered at around -387 and -470 nm) and a broad Deak (centered at around -580 nm).
文摘Nanostructural zinc oxide films have been synthesized via vapor phase growthby heating pure zinc powder. Scanning electron microscopy ( SEM) images and X-ray diffraction (XRD)results showed that four kinds of morphologies ZnO nanostructures namely nanowires, well-alignednanorods, nanofeathers and hexagonal nano-rods were formed and all of wurtzite structural crystals.The results indicated that the temperature and substrate play an important role in the formation ofdifferent morphologies of ZnO nanostructures. The photoluminescence (PL) measurement was carried outfor the well-aligned nanorods ZnO sample and blue emission peaks at 420 and 444 nm have beenobserved at room temperature. And the blue emission mechanism is discussed.
基金Project(51676167)supported by the National Natural Science Foundation of ChinaProject(17TD0035)supported by the Sichuan Provincial Scientific Research Innovation Team Program,ChinaProjects(2017TD0026,2015TD0021)supported by Science&Technology Department of Sichuan Province,China。
文摘Diesel soot subjected to high exhaust temperature suffers from thermal ageing,which is difficult to be removed by regeneration process.Based on the thermogravimetric(TG)analysis and images by high resolution transmission electron microscope(HRTEM),effects of thermal ageing temperature,ageing time and oxygen concentration on oxidation characteristic of soot are investigated.The activation energy of soot increases with the increase of ageing temperature and oxygen concentration.The activation energy increases rapidly when the ageing time is less than 45 min,and then it keeps in a value of 157 kJ/mol when the ageing time is between 45 and 60 min.Compared to the soot without thermal ageing,the shape of ageing soot particles presents shorter diameter and more regular circle by observing soot nanostructure.With the increase of ageing temperature,ageing time and oxygen concentration,the more stable structure of“shell and core”is shown in the basic carbon.The soot has an increased fringe length,decreased tortuosity and separation distance after thermal ageing process,which leads to the deepening of the disorder degree of soot nanostructures and reduction of soot oxidation activity.Consequently,the thermal ageing process should be avoided in order to optimize the active regeneration strategy.
文摘ZnO was prepared by hydrothermal method. The result of scanning electron microscopy showed that the materials had nano rod structures. Ag-doped ZnO was prepared by UV-photoreduction. Crystalline phases and optical absorption of the prepared Ag-doped ZnO samples were determined by X-ray diffraction, Raman spectrum, UV-visible, and UV- photoreduction spectrophotometer. X-ray analyses revealed that Ag was doped ZnO crystallizes in hexagonal wurtzite structure. The incorporation of Ag+ in the site of Zn2+ provoked an increase in the size of nanocrystals as compared to pure ZnO. The photocatalytic and photoluminescence properties of materials were considered.
文摘We report the systematic changes of nano-scaled features and optical properties in a promising transparent oxide material, namely, Alx (x = 0, 1, 2 and 5%) doped ZnO1-x (AZO). Electron microscopy investigations revealed the alterations at lattice scale depending on the presence of Al-content in ZnO nanostructures. Lattice spacings of 0.26 and 0.28 nm oriented along the (0002) and (10 0) planes, respectively, were attributed to euhedral-and facetted-structures of hexagonal-ZnO. The AZO samples were further characterized by XRD, SEM, UV-vis spectrophotometry, Raman spectroscopy and photoluminescence studies. It has been shown that at a dopant concentration of 2%Al in ZnO, an optimal balance could be achieved between microstructure and optical properties.
文摘Zinc Oxide (ZnO) nanostructure were synthesized by precipitating Zinc Chloride and analyzed structurally and optically. Samples were prepared at different thickness (62, 66, 74, 86, 92, and 110 nm), and substrate temperature kept at 400 ℃ in all cases. Compressed Nitrogen was used as a cartier gas. The samples of the ZnO films were characterized by X-ray diffraction (XRD), and atomic force microscopy (AFM). The XRD results indicated that the synthesized ZnO thin films have a pure wurtzite (hexagonal phase) structure. It can be seen that the highest texture coefficient was in (002) plan for nanostructure films. AFM measurement showed the grain size ranging from 62-86 nm. The optical band gap energy (Ee,) of ZnO nanostructure have two values for the same sample and the Eg decrease with increasing thickness utilizing the optical data using UV-Vis spectrophotometer.
基金Supported by the RU Top-Down under Grant No 1001/CSS/870019
文摘Zinc oxide (ZnO) is one of the most promising and frequently used semiconductor materials. In-doped nanos- tructure ZnO thin films are grown on p-type gallium nitride substrates by employing the simultaneous rf and dc magnetron co-sputtering technique. The effect of In-doping on structural, morphological and electrical properties is studied. The different dopant concentrations are accomplished by varying the direct current power of the In target while keeping the fixed radio frequency power of the ZnO target through the co-sputtering deposition technique by using argon as the sputtering gas at ambient temperature. The structural analysis confirms that all the grown thin films preferentially orientate along the c-axis with the wurtzite hexagonal crystal structure without having any kind of In oxide phases. The presenting Zn, 0 and In elements' chemical compositions are identified with EDX mapping analysis of the deposited thin films and the calculated M ratio has been found to decrease with the increasing In power. The surface topographies of the grown thin films are examined with the atomic force microscope technique. The obtained results reveal that the grown film roughness increases with the In power. The Hall measurements ascertain that all the grown films have n-type conductivity and also the other electrical parameters such as resistivity,mobility and carrier concentration are analyzed.