Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a...Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.展开更多
In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of se...In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Electroformed diamond tools have been used for many years in grinding and cutting fields while electrodeposited diamond composite coatings have been widely studied due to their desirable hardness,wear and corrosion re...Electroformed diamond tools have been used for many years in grinding and cutting fields while electrodeposited diamond composite coatings have been widely studied due to their desirable hardness,wear and corrosion resistance.This article reports the detrimental impact of diamond magnetism on the composites microstructure and gives explanations.Microstructure differences between composites that,respectively,contained no-further-treated diamond,magnetism-strengthening treated diamond and magnetism weakening treated diamond were carefully observed.It is shown that diamond magnetization treatment drastically harms the composite microstructure(e.g.,roughening the coating surface,coarsening the matrix grain,and more seriously,reducing the mechanical retention of diamond grains in the matrix) while demagnetization treatment does the opposite.All the observed facts could be explained by the electromagnetic interaction between magnetic fields produced by magnetic diamond grains and electric current(moving cations) during the electrodeposition process.展开更多
50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, ...50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.展开更多
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of ...The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃...Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:展开更多
The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle v...The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.展开更多
The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were ...The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.展开更多
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ...Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification.展开更多
Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as ...Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as a function of sintering parameters (temperature, pressure, and time). The improvement in interfacial bonding strength and the maximum thermM conductivity of 750 W/(m.K) were achieved at the optimal sintering parameters of 1200℃, 6 GPa and 10 min. It is found that the thermal conductivity of the composites depends strongly on sintering pressure. When the sintering pressure is above 6 GPa, the diamond skeleton is detected, which greatly contributes to the excellent thermal conductivity.展开更多
Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and ...Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior.展开更多
Diamond reinforced copper (Cu/diamond) composites were prepared by a pressure infilla'ation technique. The composites show a super high conductivity of 713 W.m-1.K-1 in combination with an extremely low coefficient...Diamond reinforced copper (Cu/diamond) composites were prepared by a pressure infilla'ation technique. The composites show a super high conductivity of 713 W.m-1.K-1 in combination with an extremely low coefficient of thermal expansion (CTE) of 7.72 × 10-6 K-1 (25-100℃), which are achieved by modifying the copper matrix with adding 0.3 wt.% of boron to get a good thermal contact between the matrix and the diamond particles. By adopting a series of postmachining techniques the composites were made into near-net-shape parts, and an electroless silver coating was also successfully plated on the composites. Finally, their potential applications in the thermal management of fight emitting diodes (LED) were illustrated via prototype examples.展开更多
The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and...The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 pm-size diamonds. The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated. The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu. It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes.展开更多
The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for ...The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored.Specifically,the thermal conductivity(λ)of the composites was measured and scanning electron microscopy of specific areas in the same samples was carried out to achieve quasi-in situ observations.The interface between the(100)plane of diamond and the Al matrix was well bonded with a zigzag morphology and abundant needle-like Al4C3 phases.By contrast,the interface between the(111)plane of diamond and the Al matrix showed weak bonding and debonded during thermal cycling.The debonding length increased rapidly over the first 100 thermal cycles and then increased slowly in the following 100 cycles.Theλof the diamond/Al composites decreased abruptly over the initial 20 cycles,increased afterward,and then decreased monotonously once more with increasing number of thermal cycles.Decreases in theλof the Al matrix and the corresponding stress concentration at the diamond/Al interface caused by thermal mismatch,rather than interfacial debonding,may be the main factors influencing the decrease inλof the diamond/Al composites,especially in the initial stages of thermal cycling.展开更多
Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different s...Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).展开更多
文摘Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.
文摘In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金This work was supported by Henan Agricultural University,the Natural Science Foundation of Henan Province(0411051300)the Project for Excel-lent University Teachers under the supervision of Henan Provincial Bureau of Education.
文摘Electroformed diamond tools have been used for many years in grinding and cutting fields while electrodeposited diamond composite coatings have been widely studied due to their desirable hardness,wear and corrosion resistance.This article reports the detrimental impact of diamond magnetism on the composites microstructure and gives explanations.Microstructure differences between composites that,respectively,contained no-further-treated diamond,magnetism-strengthening treated diamond and magnetism weakening treated diamond were carefully observed.It is shown that diamond magnetization treatment drastically harms the composite microstructure(e.g.,roughening the coating surface,coarsening the matrix grain,and more seriously,reducing the mechanical retention of diamond grains in the matrix) while demagnetization treatment does the opposite.All the observed facts could be explained by the electromagnetic interaction between magnetic fields produced by magnetic diamond grains and electric current(moving cations) during the electrodeposition process.
基金Project (AWJ-M13-15) supported by the Open Fund of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
文摘The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(51001086)supported by the National Natural Science Foundation of China
文摘Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:
基金financially supported by High-Technology Research and Development Program of China (No.2008AA03Z505)
文摘The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.
文摘The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.
基金supported by the National Natural Science Foundation of China (No.50971020) National High-Tech Research and Development Program of China (No.2008AA03Z505)
文摘Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification.
基金supported by the National Natural Science Foundation of China (No. 50971020)the National High-Tech Research and Development Program of China (No. 2008AA03Z505)
文摘Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as a function of sintering parameters (temperature, pressure, and time). The improvement in interfacial bonding strength and the maximum thermM conductivity of 750 W/(m.K) were achieved at the optimal sintering parameters of 1200℃, 6 GPa and 10 min. It is found that the thermal conductivity of the composites depends strongly on sintering pressure. When the sintering pressure is above 6 GPa, the diamond skeleton is detected, which greatly contributes to the excellent thermal conductivity.
文摘Effects of sintering temperature in hot pressing, t yp es, states and amounts of rare earth as well as TiH 2 on the transverse rupture strength (TRS) of Fe-based composites are studied by means of orthogonal test and variance analysis in this paper. It is found that sintering temperature has a significant effect on the TRS of Fe-based diamond composites. The optimal sin tering temperature is 780~860 ℃. On the contrary, the effects of RE additi v es on values of TRS of the diamond composites have on distinct difference no mat ter the RE is in the state of mixture or compound or oxidization. Experimental r esults demonstrate that Fe-based diamond composites with RE additives exhibit h igher TRS, which results in an increase in diamond retention capacity. The degre e of increment of TRS is different at different sintering temperatures. The opti mal amount of rare earth was found to be about 1% in weight. The effect of RE is more significant at lower sintering temperature. The experimental results also reveal that TiH 2 additive has a negative effect on the TRS of Fe-based compos ites. Microscope observations demonstrate that specimen without TiH 2 additives , shows fewer pores and denser structures in the base metal. It can also be seen from the SEM observation of the resulting fracturing surface of bending test sp ecimens that the bonding of the diamond-matrix interface is better in the speci men without TiH 2 than in the specimen with TiH 2. Also the fracture surface o f the specimen without TiH 2 reveals ductile cup and cone behavior.
基金supported by the National Natural Science Foundation of China (No. 50971020)the National High-Tech Research and Development Program of China (No. 2008AA03Z505)
文摘Diamond reinforced copper (Cu/diamond) composites were prepared by a pressure infilla'ation technique. The composites show a super high conductivity of 713 W.m-1.K-1 in combination with an extremely low coefficient of thermal expansion (CTE) of 7.72 × 10-6 K-1 (25-100℃), which are achieved by modifying the copper matrix with adding 0.3 wt.% of boron to get a good thermal contact between the matrix and the diamond particles. By adopting a series of postmachining techniques the composites were made into near-net-shape parts, and an electroless silver coating was also successfully plated on the composites. Finally, their potential applications in the thermal management of fight emitting diodes (LED) were illustrated via prototype examples.
基金supported by the National Natural Science Foundation of China (No. 50971020)the National High-Tech Research and Development Program of China (No. 2008AA03Z505)
文摘The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 pm-size diamonds. The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated. The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu. It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes.
基金financially supported by the National Natural Science Foundation of China(Nos.1871072,51871073,52171136,51771063,61604086,and U1637201)the China Postdoctoral Science Foundation(Nos.2016M590280 and 2017T100240)+1 种基金the Heilongjiang Postdoctoral Foundation(Nos.LBH-Z16075 and LBH-TZ2014)the Fundamental Research Funds for the Central Universities,China(Nos.HIT.NSRIF.20161 and HIT.MKSTISP.201615).
文摘The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated.In the present work,the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored.Specifically,the thermal conductivity(λ)of the composites was measured and scanning electron microscopy of specific areas in the same samples was carried out to achieve quasi-in situ observations.The interface between the(100)plane of diamond and the Al matrix was well bonded with a zigzag morphology and abundant needle-like Al4C3 phases.By contrast,the interface between the(111)plane of diamond and the Al matrix showed weak bonding and debonded during thermal cycling.The debonding length increased rapidly over the first 100 thermal cycles and then increased slowly in the following 100 cycles.Theλof the diamond/Al composites decreased abruptly over the initial 20 cycles,increased afterward,and then decreased monotonously once more with increasing number of thermal cycles.Decreases in theλof the Al matrix and the corresponding stress concentration at the diamond/Al interface caused by thermal mismatch,rather than interfacial debonding,may be the main factors influencing the decrease inλof the diamond/Al composites,especially in the initial stages of thermal cycling.
基金supported by the National Natural Science Foundation of China(No.11802125)。
文摘Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).