Polystyrene(PS)microspheres have the advantages of good stability,corrosion resistance and low density,which have a broad application prospect.In this paper,PS composite microspheres with 20%silver plating content wer...Polystyrene(PS)microspheres have the advantages of good stability,corrosion resistance and low density,which have a broad application prospect.In this paper,PS composite microspheres with 20%silver plating content were prepared by chemical plating method and incorporated into polydimethylsiloxane(PDMS)flexible matrix to prepare Ag@PS/PDMS flexible wave-absorbing materials.The electromagnetic parameters were adjusted to optimize the dielectric and wave-absorbing properties by varying the additional amount of Ag@PS composite microspheres in Ag@PS/PDMS composites.The X-ray diffraction(XRD)results proved the successful preparation of Ag@PS composite microspheres.The SEM and EDS images indicated that the Ag particles were attached to the external surface of PS.The presence of Ag particles in the Ag@PS composite microspheres enhances their electrical conductivity and enables the formation of a conductive network.This,in turn,improves the composites’dielectric constant.The optimal wave-absorbing capability of the composites was achieved when the Ag@PS composite microspheres were added at a weight percentage of 50%.When the sample attains a thickness of 1.8 mm,a reflection loss of at least-39.8 dB is attained at 10.4 GHz,along with a bandwidth of 1.6 GHz(9.1–10.7 GHz)for the effective absorption bandwidth(EAB).The pressure-sensitive properties of the pliable composites were investigated as well.The optimal pressure-sensitive performance of Ag@PS/PDMS composites was achieved with a 60 wt.%addition of Ag@PS composite microspheres.The resistance undergoes significant changes when subjected to pressure with a sensitivity of 9.7.The results indicate that the flexible composites’wave-absorption and pressuresensitivity properties can be modulated by adjusting the amount of Ag@PS composite microspheres added.展开更多
【目的】肠道菌群通过"微生物-肠道-脑轴"影响中枢神经系统的功能,同时也与老年性痴呆的发生发展相关,特别是盲肠内微生物菌群的变化更为显著。肠道菌群可以产生和代谢甲醛,而肠道能够迅速吸收甲醛;体内甲醛含量与老年性痴呆...【目的】肠道菌群通过"微生物-肠道-脑轴"影响中枢神经系统的功能,同时也与老年性痴呆的发生发展相关,特别是盲肠内微生物菌群的变化更为显著。肠道菌群可以产生和代谢甲醛,而肠道能够迅速吸收甲醛;体内甲醛含量与老年性痴呆病人的认知损害程度呈正相关。因此,本文比较了7月龄APP/PS1转基因老年性痴呆模型小鼠(简称APP/PS1转基因小鼠)与同月龄C57BL/6J野生型小鼠(简称C57BL/6J小鼠)肠道菌群产生甲醛的情况。【方法】取APP/PS1转基因小鼠(n=8)与C57BL/6J小鼠(n=9)的不同肠段(十二指肠、小肠、盲肠、结肠),采用2,4-Dinitrophenylhydrazi zne(DNPH)显色偶联高效液相色谱(HPLC coupled with DNPH)测定肠道消化物和肠壁组织的甲醛。【结果】APP/PS1转基因小鼠盲肠消化物内的甲醛含量,较C57BL/6J小鼠存在显著升高(P=0.036);而两者小肠和结肠消化物甲醛含量无显著差别。在两种小鼠之间,小肠壁内甲醛存在差异(P=0.052),而盲肠和结肠壁甲醛含量无显著差异(P>0.05)。【结论】肠道菌群是小鼠体内甲醛的主要来源之一,无论肠道消化物,还是肠道壁组织均为盲肠的甲醛含量最高。这些结果表明,APP/PS1转基因小鼠肠道菌群存在甲醛代谢失调,从而导致其肠道消化物的甲醛含量升高。展开更多
基金funded and supported by the National Natural Science Foundation of China(No.52103361)Shaanxi University Youth Outstanding Talents Support Plan.Scientific and Technological Plan Project of Xi’an Science and Technology Bureau(23GXFW0018,23KGDW0031-2022)Scientific and Technological Guidance Project of Xi’an Key Laboratory of Textile Composites(xafzfc-zd08).
文摘Polystyrene(PS)microspheres have the advantages of good stability,corrosion resistance and low density,which have a broad application prospect.In this paper,PS composite microspheres with 20%silver plating content were prepared by chemical plating method and incorporated into polydimethylsiloxane(PDMS)flexible matrix to prepare Ag@PS/PDMS flexible wave-absorbing materials.The electromagnetic parameters were adjusted to optimize the dielectric and wave-absorbing properties by varying the additional amount of Ag@PS composite microspheres in Ag@PS/PDMS composites.The X-ray diffraction(XRD)results proved the successful preparation of Ag@PS composite microspheres.The SEM and EDS images indicated that the Ag particles were attached to the external surface of PS.The presence of Ag particles in the Ag@PS composite microspheres enhances their electrical conductivity and enables the formation of a conductive network.This,in turn,improves the composites’dielectric constant.The optimal wave-absorbing capability of the composites was achieved when the Ag@PS composite microspheres were added at a weight percentage of 50%.When the sample attains a thickness of 1.8 mm,a reflection loss of at least-39.8 dB is attained at 10.4 GHz,along with a bandwidth of 1.6 GHz(9.1–10.7 GHz)for the effective absorption bandwidth(EAB).The pressure-sensitive properties of the pliable composites were investigated as well.The optimal pressure-sensitive performance of Ag@PS/PDMS composites was achieved with a 60 wt.%addition of Ag@PS composite microspheres.The resistance undergoes significant changes when subjected to pressure with a sensitivity of 9.7.The results indicate that the flexible composites’wave-absorption and pressuresensitivity properties can be modulated by adjusting the amount of Ag@PS composite microspheres added.
文摘【目的】肠道菌群通过"微生物-肠道-脑轴"影响中枢神经系统的功能,同时也与老年性痴呆的发生发展相关,特别是盲肠内微生物菌群的变化更为显著。肠道菌群可以产生和代谢甲醛,而肠道能够迅速吸收甲醛;体内甲醛含量与老年性痴呆病人的认知损害程度呈正相关。因此,本文比较了7月龄APP/PS1转基因老年性痴呆模型小鼠(简称APP/PS1转基因小鼠)与同月龄C57BL/6J野生型小鼠(简称C57BL/6J小鼠)肠道菌群产生甲醛的情况。【方法】取APP/PS1转基因小鼠(n=8)与C57BL/6J小鼠(n=9)的不同肠段(十二指肠、小肠、盲肠、结肠),采用2,4-Dinitrophenylhydrazi zne(DNPH)显色偶联高效液相色谱(HPLC coupled with DNPH)测定肠道消化物和肠壁组织的甲醛。【结果】APP/PS1转基因小鼠盲肠消化物内的甲醛含量,较C57BL/6J小鼠存在显著升高(P=0.036);而两者小肠和结肠消化物甲醛含量无显著差别。在两种小鼠之间,小肠壁内甲醛存在差异(P=0.052),而盲肠和结肠壁甲醛含量无显著差异(P>0.05)。【结论】肠道菌群是小鼠体内甲醛的主要来源之一,无论肠道消化物,还是肠道壁组织均为盲肠的甲醛含量最高。这些结果表明,APP/PS1转基因小鼠肠道菌群存在甲醛代谢失调,从而导致其肠道消化物的甲醛含量升高。