SnSe is a promising thermoelectric material with a high figure of merit in single crystal form, which has stimulated continuous research on polycrystalline SnSe. In this study, we investigated a metallization techniqu...SnSe is a promising thermoelectric material with a high figure of merit in single crystal form, which has stimulated continuous research on polycrystalline SnSe. In this study, we investigated a metallization techniques for polycrystalline SnSe to achieve highly efficient and practical SnSe thermoelectric modules. The Ag/Ni metallization layers were formed on pristine polycrystalline SnSe using various deposition technique: sputter coating Ni, powder Niand foil Ni by spark plasma sintering. Structural analysis demonstrated that the microstructure and con tact resistance could be different according to the metallization process, despite using the same metals. The Ag/Ni metallization layer using foil Ni acted as an effective diffusion barrier and minimized electrical contact resistance (2.3×10^-4Ωcm^2). A power loss in the thermoelectric module of only 5% was demonstrated using finite element simulation.展开更多
Electric contact material of Ag/SnO2 was successfully synthesized by in situ process method.The in-terface structure was characterized by high-resolution transmission electron microscopy(HTEM) and simulated at atomic ...Electric contact material of Ag/SnO2 was successfully synthesized by in situ process method.The in-terface structure was characterized by high-resolution transmission electron microscopy(HTEM) and simulated at atomic scale on computer.The mean-square displacements of atoms near the interface were calculated,and the results showed that near the interface both Ag side and SnO2 were mis-matched and this effect decays rapidly far from the interface.By inspecting the calculated density of states(DOS),we found that the electric-conductivity of this composite material was decreased because of the localized 4d and 2p electrons of Ag and O near the Fermi surface,respectively.Electron density changed acutely across the interface,so that there was no extra compound precipitated.A mi-cro-electric field also formed in the whole material due to the interface structure,and this may affect the electron conduction and the related electric-conductivity of the composite.It is found that the interface cohesive energy of Ag(111)/SnO2(200) was-3.50 J/m2,which is higher than the experimental results.展开更多
The electric contact material of Ag/SnO2 composite was achieved by reactive synthesis method. The compositions and microstructure of Ag/SnO2 composite were analyzed and characterized by X-ray diffraction (XRD), scan...The electric contact material of Ag/SnO2 composite was achieved by reactive synthesis method. The compositions and microstructure of Ag/SnO2 composite were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution electron microscopy (HRTEM). The struc- tural feature was typical of the particle reinforced composites. The HRTEM images revealed that the observed Ag/SnO2 interface was absence of the precipitated phase and the lattice contrast across the interface was clear and sharp. The average particle size of SnO2 in composite was near 50 nm and it was well dispersed in spherical shape. The thermodynamic mechanism of reactive synthesis method was also discussed. The electronic density distribution analysis of the interface showed the charges of Ag atoms transmitted to 0 atoms and the conductivity of the material was also affected. No extra compounds expected such as AgxOy formed at interface. The distribution of electrons was of inequality near the interface which explained why the mechanical property of the metal/ceramic materials was improved but the machining property declined.展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172010000830)supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2015R1A5A1036133)
文摘SnSe is a promising thermoelectric material with a high figure of merit in single crystal form, which has stimulated continuous research on polycrystalline SnSe. In this study, we investigated a metallization techniques for polycrystalline SnSe to achieve highly efficient and practical SnSe thermoelectric modules. The Ag/Ni metallization layers were formed on pristine polycrystalline SnSe using various deposition technique: sputter coating Ni, powder Niand foil Ni by spark plasma sintering. Structural analysis demonstrated that the microstructure and con tact resistance could be different according to the metallization process, despite using the same metals. The Ag/Ni metallization layer using foil Ni acted as an effective diffusion barrier and minimized electrical contact resistance (2.3×10^-4Ωcm^2). A power loss in the thermoelectric module of only 5% was demonstrated using finite element simulation.
基金Supported by the National Natural Science Foundation of China(Grant No.2008CB617609)the Natural Science Foundation of Yunnan Province(Grant No.2006E003Z)Science Innovation Foundation of Kunming University of Science and Technology
文摘Electric contact material of Ag/SnO2 was successfully synthesized by in situ process method.The in-terface structure was characterized by high-resolution transmission electron microscopy(HTEM) and simulated at atomic scale on computer.The mean-square displacements of atoms near the interface were calculated,and the results showed that near the interface both Ag side and SnO2 were mis-matched and this effect decays rapidly far from the interface.By inspecting the calculated density of states(DOS),we found that the electric-conductivity of this composite material was decreased because of the localized 4d and 2p electrons of Ag and O near the Fermi surface,respectively.Electron density changed acutely across the interface,so that there was no extra compound precipitated.A mi-cro-electric field also formed in the whole material due to the interface structure,and this may affect the electron conduction and the related electric-conductivity of the composite.It is found that the interface cohesive energy of Ag(111)/SnO2(200) was-3.50 J/m2,which is higher than the experimental results.
基金supported by the National Natural Science Foundation of China (Nos. 2008CB617609,u0837601, u0837603 and 50874054)the Science Innovation Foundation of Kunming University of Science and Technology
文摘The electric contact material of Ag/SnO2 composite was achieved by reactive synthesis method. The compositions and microstructure of Ag/SnO2 composite were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution electron microscopy (HRTEM). The struc- tural feature was typical of the particle reinforced composites. The HRTEM images revealed that the observed Ag/SnO2 interface was absence of the precipitated phase and the lattice contrast across the interface was clear and sharp. The average particle size of SnO2 in composite was near 50 nm and it was well dispersed in spherical shape. The thermodynamic mechanism of reactive synthesis method was also discussed. The electronic density distribution analysis of the interface showed the charges of Ag atoms transmitted to 0 atoms and the conductivity of the material was also affected. No extra compounds expected such as AgxOy formed at interface. The distribution of electrons was of inequality near the interface which explained why the mechanical property of the metal/ceramic materials was improved but the machining property declined.