A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the rel...A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures.展开更多
Microstructure and interracial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy an...Microstructure and interracial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interracial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interracial layer growth of joints brazed with active composite filler material is t^1/2 as described by Fickian law as the joints brazed with conventional active filler metal.展开更多
The brazing of TiC cermet to iron was carried out at 1223K for 5-20min using Ag-Cu-Zn filler metal. The formation phase and interface structure of the joints were investigated by electron probe microanalysis (EPMA), s...The brazing of TiC cermet to iron was carried out at 1223K for 5-20min using Ag-Cu-Zn filler metal. The formation phase and interface structure of the joints were investigated by electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the joint strength was tested by shearing method. The results showed: there occurred three new formation phases, Cu(s.s), FeNi and Ag(s.s) in TiC cermet/iron joint. The interface structure was expressed as TiC cermet/Cu(s.s)+FeNi/Ag(s.s)+a little Cu(s.s)+a little FeNi/Cu(s.s)+FeNi/iron, With brazing time increasing, there appeared highest shear strength of the joints, the value of which was up to 252.2MPa when brazing time was 10min.展开更多
Vacuum brazing of TiAl to 42CrMo steel was carried out at 8601000℃ for 5min using Ag-33Cu- 4.5Ti (mass fraction, %) filler metal. Formation phases and microstructures of the joints were investigated by SEM an...Vacuum brazing of TiAl to 42CrMo steel was carried out at 8601000℃ for 5min using Ag-33Cu- 4.5Ti (mass fraction, %) filler metal. Formation phases and microstructures of the joints were investigated by SEM and EPMA. The strength of the joints were evaluated by means of tensile tests. The results show that five interfacial formation phases occur in the brazing seam: AlCuTi and AlCu2Ti compounds, Ag solid solution, Ag-Cu eutectic phase and the reaction layer of TiC adjacent to the steel. The tensile strength of the brazed joints changes with the chang of brazing temperature. When the brazing temperature is 900℃, the tensile strength of the joint is 347MPa. TiAl turbine and 42CrMo steel shaft was brazed and the strength of TiAl/42CrMo turbine rotor was evaluated by means of tensile test, when the tensile load reached 100kN the joint of the rotor kept well.展开更多
Gas pore is a common defect in brazed joint. It lowers the brazing rate and affects the properties of joint. Experimental results show that the application of unequal-gap brazing seam effectively decreases the amount ...Gas pore is a common defect in brazed joint. It lowers the brazing rate and affects the properties of joint. Experimental results show that the application of unequal-gap brazing seam effectively decreases the amount and volume of gas pores, and increases brazing rate.This paper establishes a force model of unequal-gap brazing seam, and proposes the constitutive relationship between expulsion force and curvature. The force condition of gas bubble in geometrically different brazing seams were calculated, and the results were verified with experiments. The results show that the expulsion force of gas bubble is positively correlated to the curvature of the seam geometry. The gas bubble tends to move towards the direction with large curvature and wider gap. The directional bubble movement is obtained through varying the configuration of gas-liquid interface to meet geometric conditions. Gas bubble accelerates to expulse with arc, hyperbola and cycloid brazing seams, in which the best drainage effects of gas bubble occur for cycloid seams.展开更多
In an attempt to develop low-silver brazing filler metals used for hermetic sealing materials in the vacuum interrupter industry,the ternary Ag-50Cu-5Ga low-silver vacuum brazing filler metal was investigated.The melt...In an attempt to develop low-silver brazing filler metals used for hermetic sealing materials in the vacuum interrupter industry,the ternary Ag-50Cu-5Ga low-silver vacuum brazing filler metal was investigated.The melting temperature was measured by differential scanning calorimetry(DSC),and the brazability of Ag-50Cu-5Ga alloy on copper and metallized copper/kovar were ascertained at 850℃under 1×10-4 Pa in this article.The microstructures of the filler metal and the joints have been analyzed by using scanning electron microscopy(SEM),equipped with an energy dispersive spectroscopy.The results show that vacuum brazing was success to join with copper or metallized copper/kovar using Ag-50Cu-5Ga filler and reliable joints were obtained.There were Ag-rich phase,Cu-rich phase and a fine eutectic structure of Ag-based solid solution and Cu-based solid solution in the copper joints and the width of brazing seam is about 60μm.The joints of kovar alloy to copper after surface nickel plating was composed of AgCu eutectic phase,Ag,Cu,Cu2Ga and CuNi2 phase.The tensile strength was 167 MPa and 150 MPa,respectively.The tensile results of joints show that the joint strengths were equivalent to the traditional brazing filler metals.展开更多
Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So ...Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment.展开更多
Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the a...Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.展开更多
A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is stu...A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is studied. Experimental results show that when continuous dry grinding is employed, grits of the brazed diamond grinding wheel fail mainly in attritious wear and fracture modes and no pull-out ones are found in conventional electroplated and sintered diamond wheels. It indicates the strong retention of brazing alloy to diamond grits and the longer service life of the wheel. In addition, the ground surface has good roughness. The theoretical surface roughness agrees well with experimental results.展开更多
Reactive brazing of TiAl-based intermetallics and Ni-based alloy with Ti foil as interlayer was investigated. The interfacial microstructure and shear strength of the joints were studied. According to the experimental...Reactive brazing of TiAl-based intermetallics and Ni-based alloy with Ti foil as interlayer was investigated. The interfacial microstructure and shear strength of the joints were studied. According to the experimental observations, the molten interlayer reacts vigorously with base metals, forming several continuous reaction layers. The typical interfacial microstructure of the joint can be expressed as GH99/(Ni,Cr)ss(γ)/TiNi(β2)+TiNi2Al(τ4)+Ti2Ni(δ)/δ+Ti3Al(α2)+Al3NiTi2(τ3)/α2+τ3/TiAl. The maximum shear strength is 258 MPa for the specimen brazed at 1000°C for 10 min. Higher brazing temperature or longer brazing time causes coarsening of the phases in the brazing seam and formation of brittle intermetallic layer, which greatly depresses the shear strength of the joints.展开更多
基金the National Natural Science Foundation of China(No.51865012)the Natural Science Foundation of Jiangxi Province,China(No.20202BABL204040)+3 种基金the Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials,China(No.2016005)the Science Foundation of Educational Department of Jiangxi Province,China(No.GJJ170372)the GF Basic Scientific Research Project,China(No.JCKY2020205C002)the Civil Population Supporting Planning and Development Project,China(No.JPPT125GH038).
文摘A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures.
基金the National Natural Science Foundation of China(Grant No.50075019) the Visiting Scholar Foundation of Key Lab.in University of China
文摘Microstructure and interracial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interracial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interracial layer growth of joints brazed with active composite filler material is t^1/2 as described by Fickian law as the joints brazed with conventional active filler metal.
基金sponsored by National Natural Science Foundation (No.50175021)National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology,China.
文摘The brazing of TiC cermet to iron was carried out at 1223K for 5-20min using Ag-Cu-Zn filler metal. The formation phase and interface structure of the joints were investigated by electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the joint strength was tested by shearing method. The results showed: there occurred three new formation phases, Cu(s.s), FeNi and Ag(s.s) in TiC cermet/iron joint. The interface structure was expressed as TiC cermet/Cu(s.s)+FeNi/Ag(s.s)+a little Cu(s.s)+a little FeNi/Cu(s.s)+FeNi/iron, With brazing time increasing, there appeared highest shear strength of the joints, the value of which was up to 252.2MPa when brazing time was 10min.
文摘Vacuum brazing of TiAl to 42CrMo steel was carried out at 8601000℃ for 5min using Ag-33Cu- 4.5Ti (mass fraction, %) filler metal. Formation phases and microstructures of the joints were investigated by SEM and EPMA. The strength of the joints were evaluated by means of tensile tests. The results show that five interfacial formation phases occur in the brazing seam: AlCuTi and AlCu2Ti compounds, Ag solid solution, Ag-Cu eutectic phase and the reaction layer of TiC adjacent to the steel. The tensile strength of the brazed joints changes with the chang of brazing temperature. When the brazing temperature is 900℃, the tensile strength of the joint is 347MPa. TiAl turbine and 42CrMo steel shaft was brazed and the strength of TiAl/42CrMo turbine rotor was evaluated by means of tensile test, when the tensile load reached 100kN the joint of the rotor kept well.
基金supported by the 2020 Ningbo"3315 Talent Introduction Plan"Innovative Team (C-Class)Henan Province's Major Key Technology Demand Unveiling and Tackling Key Projects (Grant No. 191110111000)。
文摘Gas pore is a common defect in brazed joint. It lowers the brazing rate and affects the properties of joint. Experimental results show that the application of unequal-gap brazing seam effectively decreases the amount and volume of gas pores, and increases brazing rate.This paper establishes a force model of unequal-gap brazing seam, and proposes the constitutive relationship between expulsion force and curvature. The force condition of gas bubble in geometrically different brazing seams were calculated, and the results were verified with experiments. The results show that the expulsion force of gas bubble is positively correlated to the curvature of the seam geometry. The gas bubble tends to move towards the direction with large curvature and wider gap. The directional bubble movement is obtained through varying the configuration of gas-liquid interface to meet geometric conditions. Gas bubble accelerates to expulse with arc, hyperbola and cycloid brazing seams, in which the best drainage effects of gas bubble occur for cycloid seams.
基金the National Key R&D Program of China(Grant No.2017YFB0305702).
文摘In an attempt to develop low-silver brazing filler metals used for hermetic sealing materials in the vacuum interrupter industry,the ternary Ag-50Cu-5Ga low-silver vacuum brazing filler metal was investigated.The melting temperature was measured by differential scanning calorimetry(DSC),and the brazability of Ag-50Cu-5Ga alloy on copper and metallized copper/kovar were ascertained at 850℃under 1×10-4 Pa in this article.The microstructures of the filler metal and the joints have been analyzed by using scanning electron microscopy(SEM),equipped with an energy dispersive spectroscopy.The results show that vacuum brazing was success to join with copper or metallized copper/kovar using Ag-50Cu-5Ga filler and reliable joints were obtained.There were Ag-rich phase,Cu-rich phase and a fine eutectic structure of Ag-based solid solution and Cu-based solid solution in the copper joints and the width of brazing seam is about 60μm.The joints of kovar alloy to copper after surface nickel plating was composed of AgCu eutectic phase,Ag,Cu,Cu2Ga and CuNi2 phase.The tensile strength was 167 MPa and 150 MPa,respectively.The tensile results of joints show that the joint strengths were equivalent to the traditional brazing filler metals.
文摘Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment.
基金Foundation item:Project(51865012)supported by the National Natural Science Foundation of ChinaProject(2016005)supported by the Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials,China+2 种基金Project(GJJ170372)supported by the Science Foundation of Educational Department of Jiangxi Province,ChinaProject(JCKY2016603C003)supported by the GF Basic Research Project,ChinaProject(JPPT125GH038)supported by the Research Project of Special Furnishment and Part,China
文摘Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.
基金Project(51204016)supported by the National Natural Science Foundation of ChinaProject(20120006120011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(FRF-TP-12-154A)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(11175020)supported by the National Science Foundation for Post-doctoral Scientists of China
文摘A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is studied. Experimental results show that when continuous dry grinding is employed, grits of the brazed diamond grinding wheel fail mainly in attritious wear and fracture modes and no pull-out ones are found in conventional electroplated and sintered diamond wheels. It indicates the strong retention of brazing alloy to diamond grits and the longer service life of the wheel. In addition, the ground surface has good roughness. The theoretical surface roughness agrees well with experimental results.
基金Projects (50975062, 51105107, 51021002) supported by the National Natural Science Foundation of ChinaProjects (QC2011C044) supported by the Natural Science Foundation of Heilongjiang Province,China+1 种基金Project (20112302130005) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject (CUGA4130902510) supported by the China Postdoctoral Science Foundation Funded
文摘Reactive brazing of TiAl-based intermetallics and Ni-based alloy with Ti foil as interlayer was investigated. The interfacial microstructure and shear strength of the joints were studied. According to the experimental observations, the molten interlayer reacts vigorously with base metals, forming several continuous reaction layers. The typical interfacial microstructure of the joint can be expressed as GH99/(Ni,Cr)ss(γ)/TiNi(β2)+TiNi2Al(τ4)+Ti2Ni(δ)/δ+Ti3Al(α2)+Al3NiTi2(τ3)/α2+τ3/TiAl. The maximum shear strength is 258 MPa for the specimen brazed at 1000°C for 10 min. Higher brazing temperature or longer brazing time causes coarsening of the phases in the brazing seam and formation of brittle intermetallic layer, which greatly depresses the shear strength of the joints.