Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabr...This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.展开更多
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and hug...Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs.展开更多
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect...All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.展开更多
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit...Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.展开更多
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water...Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.展开更多
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe...Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.展开更多
A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and i...A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and its influence on the morphology of the TiO2 film was discussed. The results show that the electric field strength is enhanced by the covering. The growth rate of TiO2 increases with the assist of the local electric field. However, TiO2 dissolution is hindered since the local electric field prevents [TiF6]6- from diffusing. It means that the balance condition for the formation of nanotubes is broken, and TiO2 nanoparticles are formed. Moreover, the crystal structure of the TiO2 film was confirmed using X-ray diffraction and Raman analysis. The anatase is a main phase for the proposed film.展开更多
Recent progress in nanoscience and nanotechnology creates new opportunities in the design of novel SnO2 nanomaterials for photocatalysis and photoelectrochemical. Herein, we firstly highlight a facile method to prepar...Recent progress in nanoscience and nanotechnology creates new opportunities in the design of novel SnO2 nanomaterials for photocatalysis and photoelectrochemical. Herein, we firstly highlight a facile method to prepare threedimensional porous networks of ultra-long SnO2 nanotubes through the single capillary electrospinning technique.Compared with the traditional SnO2 nanofibers, the as-obtained three-dimensional porous networks show enhancement of photocurrent and photocatalytic activity, which could be ascribed to its improved light-harvesting efficiency and high separation efficiency of photogenerated electron–hole pairs. Besides, the synthesis route delivered three-dimensional sheets on the basis of interwoven nanofibrous networks, which can be readily recycled for the desirable circular application of a potent photocatalyst system.展开更多
Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D ...Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D MoS2 lamellae were grown on the surface of the nanotubes and Ti^3+/Ov ions were introduced by reduction.The photocatalytic performance of the 2D MoS2/Ti^3+-TiO2 nanotubes was^15 times better than that of TiO2.The HER enhancement of the MoS2/Ti^3+-TiO2 nanotubes can be attributed to the Pt-like behavior of 2D MoS2 and the presence of Ti^3+-ions,which facilitated the quick diffusion of the photogenerated electrons to water,reducing the H2 activation barrier.The presence of Ov ions in the nanotubes and their hollow structure increased their solar utilization.展开更多
The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, an...The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, anisotropic swelling appears on the polycrystalline TiO2 granula at first, and then the nanotubes are formed.展开更多
TiO2 nanotube precursor was synthesized by the hydrothermal reaction of TiO2 powders with NaOH solution and the properties of the nanotube materials were tuned using different post-treatments. Transmission electron mi...TiO2 nanotube precursor was synthesized by the hydrothermal reaction of TiO2 powders with NaOH solution and the properties of the nanotube materials were tuned using different post-treatments. Transmission electron microscopic (TEM) observation revealed that the nanotube could be obtained by either a direct rinse with acid solution or rinse with distilled water followed by acid solution. The results of X-ray diffraction (XRD) and inductively coupled plasma (ICP) analysis indicated that the nanotube material was composed of H2Ti2O5·H2O. In addition, the photocatalytic activities of the resulting catalysts were found to be strongly dependent on the post-treatment. The results of the photocatalytic reaction showed that the degradation of Acid-red 3B dye fitted pseudo-zero-order kinetics and TiO2 nanotube prepared under direct rinse with acid solution exhibited a higher catalytic efficiency compared to other catalysts.展开更多
We report the development of a novel visible response BiVO_4/TiO_2(N_2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO_2 nanotube shows a high carrier concentration rate, thus re...We report the development of a novel visible response BiVO_4/TiO_2(N_2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO_2 nanotube shows a high carrier concentration rate, thus resulting in a high efficient charge transportation and low electron–hole recombination in the TiO_2–BiVO_4. Therefore, the BiVO_4/TiO_2(N_2) NTs photoanode enabled with a significantly enhanced photocurrent of 2.73 mA cm^(-2)(at 1 V vs. Ag/Ag Cl) and a degradation efficiency in the oxidation of dyes under visible light. Field emission scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectrometer, and UV–Vis absorption spectrum were conducted to characterize the photoanode and demonstrated the presence of both metal oxides as a junction composite.展开更多
Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. ...Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.展开更多
Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-n...Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-naphthalenesulfonic acid (a-NSA) as the dopant. It was found that PANI-TiO2 composites and PANI nanotubes both behaved with significant photocatalytic activities towards AZO dyes, during 2 h photocatalytic processes under natural light, the degradation ratio was 94.2% and 97.2% respectively (methyl orange and orange II). The morphology of such products was characterized by SEM. The specific surface area of such composite nanotubes was 14.7 m2/g compared to normal polyaniline which was 0.27 m2/g. IR and X-ray diffraction characterizations showed that the chemical chain of the composite nanotubes was identical to that of the doped PANI. It may provide a new way for photodegradation of organic contaminants by using conjugated polymer with dimensional structure.展开更多
IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and character...IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and characterized by means of structural,surface analytical and electrochemical techniques.Nb doping of titania significantly increased the surface area of the support from 145(TNTs)to 260 m2g-1(Nb-TNTs),which was significantly higher than those of the Nb-doped titania supports previously reported in the literature.The surface analytical techniques showed good dispersion of the catalysts onto the supports.The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV)species,the suitable form to behave as a donor introducing free electrons to the conduction band of titania.The redox transitions of the cyclic voltammograms,in agreement with the XPS results,were found to be reversible.Despite the supported materials presented bigger crystallite sizes than the unsupported ones,the total number of active sites of the former was also higher due to their better catalyst dispersion.Considering the outer and the total charges of the cyclic voltammograms in the range 0.1–1.4 V,stability and electrode potentials at given current densities,the preferred catalyst was Ir O2 supported on the Nb-TNTs.The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping,thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER.The good dispersion of IrO2,high specific surface area of the Nb-doped supports,accessibility of the electroactive centers,increased stability due to Nb doping and electron donor properties of the Nb(IV)oxide species were considered the main reasons for its good performance.展开更多
As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nan...As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.展开更多
CO_(2) methanation using nickel-based catalysts has attracted large interest as a promising power-to-gas route.Ni nanoparticles supported on nitrogen-doped CNTs with Ni loadings in the range from 10 wt% to 50 wt% were...CO_(2) methanation using nickel-based catalysts has attracted large interest as a promising power-to-gas route.Ni nanoparticles supported on nitrogen-doped CNTs with Ni loadings in the range from 10 wt% to 50 wt% were synthesized by impregnation,calcination and reduction and characterized by elemental analysis,X-ray powder diffraction,H_(2) temperature-programmed reduction,CO pulse chemisorption and transmission electron microscopy.The Ni/NCNT catalysts were highly active in CO_(2) methanation at atmospheric pressure,reaching over 50% CO_(2) conversion and over 95% CH_(4) selectivity at 340℃ and a GHSV of50,000 mL g^(-1) h^(-1) under kinetically controlled conditions.The small Ni particle sizes below 10 nm despite the high Ni loading is ascribed to the efficient anchoring on the N-doped CNTs.The optimum loading of 30 wt%-40 wt% Ni was found to result in the highest Ni surface area,the highest degree of conversion and the highest selectivity to methane.A constant TOF of 0.3 s^(-1) was obtained indicating similar catalytic properties of the Ni nanoparticles in the range from 10 wt%to 50 wt% Ni loading.Long-term experiments showed that the Ni/NCNT catalyst with 30 wt% Ni was highly stable for 100 h time on stream.展开更多
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
基金National Natural Science Foundation of China(No.12004070)。
文摘This article studies the role of electrochemical parameters in controlling the morphology of oxidized TiO_(2)nanotubes and the electrochemical performance of modified TiO_(2)nanotubes.Humidity is a key factor for fabricating TiO_(2)nanotubes.When the relative humidity belows 70%,the TiO_(2)nanotubes can be successfully prepared.What's more,by changing the anodization voltage and time,the diameter and the length of TiO_(2)nanotubes can be adjusted.In addition,the TiO_(2)nanotubes are modified through electrochemical self-doping and loading Pt metal particles on the surface of the nanotubes,which promotes the performance of the supercapacitor.The sample anodized at 100 V for 3 h has a specific capacity of up to 2.576 mF/cm~2 at a scan rate of 100 mV/s after self-doping,and its capacity retention rate still remains at 89.55%after 5000 cycles,demonstrating excellent cycling stability.The Pt-modified sample has a specific capacity of up to 3.486 mF/cm~2 at the same scan rate,exhibiting more outstanding electrochemical performance.
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金the financial support from the Australian Research CouncilCentre for Materials Science,Queensland University of Technology。
文摘Tin disulfide(SnS_(2)),due to large interlayer spacing and high theoretical capacity,is regarded as a prospective anode material for lithium-ion batteries.Nevertheless,the poor electron conductivity of SnS_(2) and huge volumetric change during the lithiation/delithiation process lead to a rapid capacity decay of the battery,hindering its commercialization.To address these issues,herein,SnS_(2) is in-situ grown on the surface of carbon nanotubes(CNT)and then encapsulated with a layer of porous amorphous carbon(CNT/SnS_(2)@C)by simple solvothermal and further carbonization treatment.The synergistic effect of CNT and porous carbon layer not only enhances the electrical co nductivity of SnS_(2) but also limits the huge volumetric change to avoid the pulverization and detachment of SnS_(2).Density functional theo ry calculations show that CNT/SnS_(2)@C has high Li^(+)adsorption and lithium storage capacity achieving high reaction kinetics.Consequently,cells with the CNT/SnS_(2)@C anode exhibit a high lithium storage capacity of 837mAh/g after 100 cycles at 0.1 A/g and retaining a capacity of 529.8 mAh/g under 1.0 A/g after 1000 cycles.This study provides a fundamental understanding of the electrochemical processes and beneficial guidance to design high-performance SnS_(2)-based anodes for LIBs.
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123,51873152)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the Science and Technology Plans of Tianjin(19PTSYJC00010)the Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.
基金supported by the Excellent Youth Foundation of Henan Scientific Committee,China(222300420018)Key Scientific Research Projects in Universities of Henan Province,China(21zx006)。
文摘Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.
基金the National Natural Science Foundation of China(Nos.52072151,52171211,52102253,52271218,U22A20145)the Jinan Independent Innovative Team(2020GXRC015)+1 种基金the Major Program of Shandong Province Natural Science Foundation(ZR2021ZD05)the Science and Technology Program of University of Jinan(XKY2119).
文摘Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution.
基金Project(1254G024)supported by the Young Core Instructor Foundation from Heilongjiang Educational Committee,ChinaProject(2012RFQXS113)supported by Scientific and Technological Innovation Talents of Harbin,China
文摘Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation.
文摘A novel titanium dioxide (TiO2) film comprising both nanotubes and nanopaticles was fabricated by an anodization process of the modified titanium. The local electric field at the anodized surface was simulated and its influence on the morphology of the TiO2 film was discussed. The results show that the electric field strength is enhanced by the covering. The growth rate of TiO2 increases with the assist of the local electric field. However, TiO2 dissolution is hindered since the local electric field prevents [TiF6]6- from diffusing. It means that the balance condition for the formation of nanotubes is broken, and TiO2 nanoparticles are formed. Moreover, the crystal structure of the TiO2 film was confirmed using X-ray diffraction and Raman analysis. The anatase is a main phase for the proposed film.
基金supported financially by the National Natural Science Foundation of China (Nos. 51001091, 111174256, 91233101)the Fundamental Research Program from the Ministry of Science and Technology of China (No. 2014CB931704)Project funded by China Postdoctoral Science Foundation(No. 2014M560602)
文摘Recent progress in nanoscience and nanotechnology creates new opportunities in the design of novel SnO2 nanomaterials for photocatalysis and photoelectrochemical. Herein, we firstly highlight a facile method to prepare threedimensional porous networks of ultra-long SnO2 nanotubes through the single capillary electrospinning technique.Compared with the traditional SnO2 nanofibers, the as-obtained three-dimensional porous networks show enhancement of photocurrent and photocatalytic activity, which could be ascribed to its improved light-harvesting efficiency and high separation efficiency of photogenerated electron–hole pairs. Besides, the synthesis route delivered three-dimensional sheets on the basis of interwoven nanofibrous networks, which can be readily recycled for the desirable circular application of a potent photocatalyst system.
基金supported by the National Natural Science Foundation of China(Grant Nos.51672249,51802282,and 11804301)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ17F040004 and LY17E020001)Fundamental Research Funds of Zhejiang Sci-Tech University(No.2019Q062)。
文摘Two-dimensional (2D) ultrathin MoS2-modified black Ti^3+-TiO2 nanotubes were fabricated using an electrospinning-hydrothermal treatment-reduction method.Bare TiO2 nanotubes were fabricated via electrospinning.Then,2D MoS2 lamellae were grown on the surface of the nanotubes and Ti^3+/Ov ions were introduced by reduction.The photocatalytic performance of the 2D MoS2/Ti^3+-TiO2 nanotubes was^15 times better than that of TiO2.The HER enhancement of the MoS2/Ti^3+-TiO2 nanotubes can be attributed to the Pt-like behavior of 2D MoS2 and the presence of Ti^3+-ions,which facilitated the quick diffusion of the photogenerated electrons to water,reducing the H2 activation barrier.The presence of Ov ions in the nanotubes and their hollow structure increased their solar utilization.
基金This project was supported by the National Natural Science Foundation of China (20071010).
文摘The process, that the polycrystalline TiO2 powders were converted into TiO2 nanotubes, was observed with transmission electron microscope. The results obtained indicated that in concentrated NaOH aqueous solution, anisotropic swelling appears on the polycrystalline TiO2 granula at first, and then the nanotubes are formed.
文摘TiO2 nanotube precursor was synthesized by the hydrothermal reaction of TiO2 powders with NaOH solution and the properties of the nanotube materials were tuned using different post-treatments. Transmission electron microscopic (TEM) observation revealed that the nanotube could be obtained by either a direct rinse with acid solution or rinse with distilled water followed by acid solution. The results of X-ray diffraction (XRD) and inductively coupled plasma (ICP) analysis indicated that the nanotube material was composed of H2Ti2O5·H2O. In addition, the photocatalytic activities of the resulting catalysts were found to be strongly dependent on the post-treatment. The results of the photocatalytic reaction showed that the degradation of Acid-red 3B dye fitted pseudo-zero-order kinetics and TiO2 nanotube prepared under direct rinse with acid solution exhibited a higher catalytic efficiency compared to other catalysts.
基金the National Nature Science Foundation of China(21507085,21576162)Shanghai Sailing Program of China(14YF1401500)for financial support
文摘We report the development of a novel visible response BiVO_4/TiO_2(N_2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO_2 nanotube shows a high carrier concentration rate, thus resulting in a high efficient charge transportation and low electron–hole recombination in the TiO_2–BiVO_4. Therefore, the BiVO_4/TiO_2(N_2) NTs photoanode enabled with a significantly enhanced photocurrent of 2.73 mA cm^(-2)(at 1 V vs. Ag/Ag Cl) and a degradation efficiency in the oxidation of dyes under visible light. Field emission scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectrometer, and UV–Vis absorption spectrum were conducted to characterize the photoanode and demonstrated the presence of both metal oxides as a junction composite.
文摘Fe2O3@polypyrrole nanotubes (Fe2O3@PPy nanotubes) have been successfully prepared by in-situ polymerization of the pyrrole on the surface of Fe2O3 nanotubes (Fe2O3-NTs), via using L-Lysine as modified surfactant. Hollow PPy nanotubes were also produced by dissolution of the Fe2O3 core from the core/shell composite nanotubes with 1 mol,L-1 HC1. Scanning electron microscopy(SEM), transmission electron microscope (TEM), selective-area electron diffraction (SAED), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FT-IR) confirmed the formation of Fe2O3-NTs and Fe2O3@PPy core/shell nanotubes. Its catalytic properties were investigated under the ultrasound. The results of UV-vis spectroscopy (UV) demonstrated Rhodamine B (RhB) can be efficiently degraded by Fe2O3 @PPy nanotubes.
基金Funded in Part by the Research Fund of Hubei Provincial Department of Education,China(No.Q20121102)
文摘Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-naphthalenesulfonic acid (a-NSA) as the dopant. It was found that PANI-TiO2 composites and PANI nanotubes both behaved with significant photocatalytic activities towards AZO dyes, during 2 h photocatalytic processes under natural light, the degradation ratio was 94.2% and 97.2% respectively (methyl orange and orange II). The morphology of such products was characterized by SEM. The specific surface area of such composite nanotubes was 14.7 m2/g compared to normal polyaniline which was 0.27 m2/g. IR and X-ray diffraction characterizations showed that the chemical chain of the composite nanotubes was identical to that of the doped PANI. It may provide a new way for photodegradation of organic contaminants by using conjugated polymer with dimensional structure.
文摘IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and characterized by means of structural,surface analytical and electrochemical techniques.Nb doping of titania significantly increased the surface area of the support from 145(TNTs)to 260 m2g-1(Nb-TNTs),which was significantly higher than those of the Nb-doped titania supports previously reported in the literature.The surface analytical techniques showed good dispersion of the catalysts onto the supports.The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV)species,the suitable form to behave as a donor introducing free electrons to the conduction band of titania.The redox transitions of the cyclic voltammograms,in agreement with the XPS results,were found to be reversible.Despite the supported materials presented bigger crystallite sizes than the unsupported ones,the total number of active sites of the former was also higher due to their better catalyst dispersion.Considering the outer and the total charges of the cyclic voltammograms in the range 0.1–1.4 V,stability and electrode potentials at given current densities,the preferred catalyst was Ir O2 supported on the Nb-TNTs.The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping,thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER.The good dispersion of IrO2,high specific surface area of the Nb-doped supports,accessibility of the electroactive centers,increased stability due to Nb doping and electron donor properties of the Nb(IV)oxide species were considered the main reasons for its good performance.
文摘As a preliminary investigation towards obtaining carbon nanotube composite adsorbent for CO2 capture, in this study CO2 adsorption performance of three commercial carbon nanotubes (CNTs) one single-walled carbon nanotubes (SWCNTs), and two (2) different multi-walled carbon nanotubes (referred to as A-MWCNTs and B-MWCNTs) were evaluated and compared. The purpose of this study was to compare the different types of CNTs and select the best to serve as the solid anchor in the development of a hydrophobic composite adsorbent material for CO2 capture. The N2 physi- sorption of the CNTs was conducted to determine their surface area, pore volume and pore size. In addition, morphology and purity of the CNTs were checked with Transmission Electron Microscopy and Raman Spectroscopy, respectively. The CO2 adsorption capacity of the CNTs was evaluated using Thermo-gravimetric analysis (TGA) at 1.1 bar, at operating temperature ranged from 25 to 55 ~C and at different CO2 feed flow rates, in order to evaluate the effects of these variables on the CO2 adsorption capacity. The results of CO2 adsorption with the TGA show that CO2 adsorption capacity for both SWCNTs and MWCNTs was the highest at 25 ~C. Changing the CO2 flowrates had no significant effect on the adsorption capacity of MWCNTs, but decreasing the CO2 flow rate resulted in the enhancement of the CO2 adsorption capacity of SWCNTs. Overall, it was found that the SWCNTs displayed the highest CO2 adsorption capacity (29.97 gCO2/kg ad- sorbent) when compared to the MWCNTs (12.09 gCO2/kg adsorbent), indicating a 150% increase in adsorption capacity over MWCNTs.
基金supported by the Ministry of Economic Affairs,Innovation,Digitalization and Energy of the State of North Rhine-Westphalia,W041A。
文摘CO_(2) methanation using nickel-based catalysts has attracted large interest as a promising power-to-gas route.Ni nanoparticles supported on nitrogen-doped CNTs with Ni loadings in the range from 10 wt% to 50 wt% were synthesized by impregnation,calcination and reduction and characterized by elemental analysis,X-ray powder diffraction,H_(2) temperature-programmed reduction,CO pulse chemisorption and transmission electron microscopy.The Ni/NCNT catalysts were highly active in CO_(2) methanation at atmospheric pressure,reaching over 50% CO_(2) conversion and over 95% CH_(4) selectivity at 340℃ and a GHSV of50,000 mL g^(-1) h^(-1) under kinetically controlled conditions.The small Ni particle sizes below 10 nm despite the high Ni loading is ascribed to the efficient anchoring on the N-doped CNTs.The optimum loading of 30 wt%-40 wt% Ni was found to result in the highest Ni surface area,the highest degree of conversion and the highest selectivity to methane.A constant TOF of 0.3 s^(-1) was obtained indicating similar catalytic properties of the Ni nanoparticles in the range from 10 wt%to 50 wt% Ni loading.Long-term experiments showed that the Ni/NCNT catalyst with 30 wt% Ni was highly stable for 100 h time on stream.