Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic stru...Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.展开更多
In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic fun...In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic functional groups and citric acid has the capability to block the surface of g-C_(3)N_(4) from chemical reactivity and activated the surface of g-C_(3)N_(4) for various reactions. Consequently, the agglomeration behavior and controlled shape of g-C_(3)N_(4) has also been achieved. Our experimental results i.e. XRD,TEM, HRTEM, PL, FS, XPS, and PEC have confirmed that the lemon juice mediated and green g-C_(3)N_(4)(L-CN) have good performances and remarkable visible light photocatalytic activities as compared to the chemically synthesized g-C_(3)N_(4)(CN). Furthermore, the small surface area and low charge separation of g-C_(3)N_(4) is upgraded by coupling with Zn O nanoparticles. It is proved that the coupling of Zn O worked as a facilitator and photoelectron modulator to enhance the charge separation of g-C_(3)N_(4). Compared to pristine lemon-mediated green g-C_(3)N_(4)(L-CN), the most active sample 5Zn O/L-CN showed ~ 5-fold improvement in activities for ciprofloxacin(CIP) and methylene blue(MB) degradation. More specifically,the mineralization process and degradation pathways, and the mineralization process of ciprofloxacin(CIP) and methylene blue(MB) are suggested. Finally, our present novel research work will provide new access to synthesize the eco-friendly and bio-caped green g-C_(3)N_(4)nanomaterials and their employment for pollutants degradation and environmental purification.展开更多
The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined condit...The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites.展开更多
Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical p...Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.展开更多
Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi...Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.展开更多
An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the mag...An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.展开更多
A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylo...A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano- La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6 %, 12.7 % and 16.3 % higher respectively than those of MC nylon.展开更多
Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/ch...Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.展开更多
Polyethylene-nanocomposites with CaCO3-weight fractions from 0 to 15 wt.% were prepared by in-situ polymerization with Me2Si(Ind)2ZrC12/MAO metallocene catalysts. A high activity especially in the presence of TIBA w...Polyethylene-nanocomposites with CaCO3-weight fractions from 0 to 15 wt.% were prepared by in-situ polymerization with Me2Si(Ind)2ZrC12/MAO metallocene catalysts. A high activity especially in the presence of TIBA was observed. The morphology was investigated by using raster electron microscopy (REM) showing that the CaCO3-nanoparticles are uniformly distributed. The melting temperatures and the crystallization temperatures are not much influenced by increasing filler content.展开更多
In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic...In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic route in the aqueous medium. Phase, crystallinity, surface structure and surface behavior of the synthesized materials were determined by X-ray diffraction(XRD) and Brunauer-Emmett-Teller analysis(BET) techniques. XRD study established formation of good crystalline ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanomaterials. By using intensity of constituent peaks in the XRD pattern, the compositions of nanocomposites were determined. From the BET analysis, the prepared materials show mesoporous behavior, type Ⅳ curves along with H4 hysteresis. The ZnO/ZnS/α-Fe2O3 composite shows the largest surface area among three materials. From the UV-visible spectra, the band gap energy of the materials was determined. Photoluminescence spectra(PL) were used to determine the emission behavior and surface defects in the materials. In PL spectra, the intensity of UV peak of ZnO/ZnS is lowered than that of ZnO while in case of ZnO/ZnS/α-Fe2O3, the intensity further decreased. The visible emission spectra of ZnO/ZnS increased compared with ZnO while in ZnO/ZnS/α-Fe2O3 it is further increased compared with ZnO/ZnS. The as-synthesized materials were used as photocatalysts for the degradation of dye MeO. The photo-degradation data revealed that the ZnO/ZnS/α-Fe2O3 is the best photocatalyst among three specimens for the degradation of dye MeO. The decrease of intensity of UV emission peak and the increase of intensity of visible emission cause the decrease of recombination of electrons and holes which are ultimately responsible for the highest photocatalytic activity of ZnO/ZnS/α-Fe2O3.展开更多
Selective laser sintering (SLS) is a new process to prepare the polystyrene (PS)/Al2O3 nanocomposites. In this paper, with different laser power and other processing parameters unchanged, the morphology, density a...Selective laser sintering (SLS) is a new process to prepare the polystyrene (PS)/Al2O3 nanocomposites. In this paper, with different laser power and other processing parameters unchanged, the morphology, density and mechanical properties of the sintered specimens were investigated. It was found that nano-sized inorganic particles are uniformly located in the PS matrix and the maximum density of the sintered specimens with pure PS powder reaches 1.07 g/cm^3, higher than 1.04 g/cm^3 that of the sintered specimens with mixture powder. Due to strengthening and toughness of the nano-sized Al2O3 inorganic particles, the maximum notched impact strength and tensile strength of the sintered part mixed with nano-sized inorganic particles are improved greatly from 7.5 to 12.1 kJ/m^2 and from 6.5 to 31.2 MPa, respectively, under the same sintering condition.展开更多
An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various eur...An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various europium ions doping concentrations were carried out. XRD patterns indicate that the samples show an amorphous matrix structure, and the SEM patterns show that the samples present a multi-hole loosen structure, and a rod structure after high-temperature annealling treatment (800 ℃) for 3 h. Raman spectra demonstrate that Y3+ and Eu3+ ions were incorporated into the composites successfully through the sol-gel and post-anneal process. Under the excitation of 387 nm (7F0→5G2) violet light (but not 394 nm (7F0→5L6)), the strongest emission spectrum, the red light, was observed at around 616 nm (5D0→7F2) when the samples were re-treated by annealing at high temperature after 3 months laying aside. Without annealing treatment, the optimized doping mole ratio of Eu ions is about 9%, which is much higher than that doped in SiOglass with the concentration of 3.5%, and it then becomes 5% when the samples are treated by high temperature annealing. In addition, the excitation of 532 nm (7F0→5D1) light can also arouse a comparatively strong emission.展开更多
We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic...We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.展开更多
Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexaned...Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexanediamine,folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites.The products were characterized by Fourier-transform infrared spectroscopy,transmission electron microscopy,and vibrating sample magnetometry.Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel.The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel,and thus had potential application in tumor-targeted combination chemotherapy.展开更多
Si3N4/TiC nanocomposite ceramics have been fabricated by hot pressing technique with Al2O3 and Y2O3 as additives. The results showed that well dispersed composite powder was carried out by adding dispersant and adjust...Si3N4/TiC nanocomposite ceramics have been fabricated by hot pressing technique with Al2O3 and Y2O3 as additives. The results showed that well dispersed composite powder was carried out by adding dispersant and adjusting pH values of suspensions. Remarkable increase in flexural strength at room temperatures was obtained by adding nanoparticles in Si3N4 matrix with 10% (wt pct) of nano-Si3N4 and 15% of nano-TiC. The flexural strength, fracture toughness and hardness were 1025 MPa, 7.5 MPa.m^1/2 and 15.6 GPa, respectively. The microstructures of materials were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that TiC nanoparticles distribute in the matrix and at the grain boundaries. According to the fracture form, low contents of nano particles could refine matrix grains and lead to the crack deflection as well as crack pinning. The multiplex microstructure was formed by mixing nano-Si3N4 particles. The crack trajectories exhibited crack deflection, rod-like grain bridging and pull-out.展开更多
The structure and dielectric properties of (Pb,Sr)Nb2O6-NaNbO3-SiO2 glass-ceramics with different Pb and Sr contents were investigated. The XRD pattern of glass-ceramics without Sr substitution is different from tha...The structure and dielectric properties of (Pb,Sr)Nb2O6-NaNbO3-SiO2 glass-ceramics with different Pb and Sr contents were investigated. The XRD pattern of glass-ceramics without Sr substitution is different from that with Sr substitution, which indicates the existence of orthorhombic phase in the latter ones. TEM bright field observation shows nanosized microstructures, while for samples with Sr, typical eutectic microstrncture with separated crystallized bands is found in the glass matrix. Dielectric properties measurement of the samples indicates an obvious improvement of dielectric constant, dielectric loss, DC field and temperature dependence of dielectric constant when the molar ratio of Sr to Pb is 4:6.展开更多
The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported ...The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation.展开更多
Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticl...Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticles having a crystallite size of 20 nm were obtained by controlling the ratio of Fe(II) and Fe(III) precursors.In the second step,Fe3O4 particles were embedded in SiO2 matrix by the hydrolysis and subsequent condensation of the silicic acid solution containing Fe3O4 particles.It was found that the Fe3O4 nanoparticles homogenously disperse in the SiO2 matrix.The Fe3O4:SiO2 nanocomposite exhibited an enhanced thermal stability against oxidation compared with pure Fe3O4.FT-IR analysis indicates the presence of the Si-O-Fe bond in the Fe3O4:SiO2 (1:10,mole fraction) nanocomposite.展开更多
To protect the AM60B magnesium alloy from corrosion,a sol-gel coating containing hydroxylated g-C_(3)N_(4)nanoplates was applied.The chemical composition of the hydroxylated g-C_(3)N_(4)nanoplates was investigated usi...To protect the AM60B magnesium alloy from corrosion,a sol-gel coating containing hydroxylated g-C_(3)N_(4)nanoplates was applied.The chemical composition of the hydroxylated g-C_(3)N_(4)nanoplates was investigated using X-ray photoelectron spectroscopy(XPS).The hydroxylation process did not affect the crystal size,specific surface area,pore volume,average pore diameter,and thermal stability of the g-C_(3)N_(4)nanoplates.After incorporating pristine and hydroxylated g-C_(3)N_(4)nanoplates,dense sol-gel coatings were obtained.Transmission electron microscopy(TEM)revealed the uniform distribution of the modified g-C_(3)N_(4)in the coating.The average roughness of the coating was also reduced after adding the modified nanoplates due to the decreased aggregation tendency.Electrochemical impedance spectroscopy(EIS)examinations in simulated acid rain revealed a significant improvement in the anticorrosion properties of the sol-gel film after the addition of the modified g-C_(3)N_(4)due to the chemical bonding of the coating to the nanoplates.展开更多
Fe2O3/active carbon(Fe2O3/AC) nanocomposites were readily fabricated by pyrolyzing Fe3+ impregnated active carbon in a nitrogen atmosphere. The as-prepared composites were studied by X-ray powder diffraction(XRD)...Fe2O3/active carbon(Fe2O3/AC) nanocomposites were readily fabricated by pyrolyzing Fe3+ impregnated active carbon in a nitrogen atmosphere. The as-prepared composites were studied by X-ray powder diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The capacitive property of the composites was investigated by cyclic voltammetry(CV) and galvanostatic charge-discharge test. Physical characterizations show that the γ-Fe2O3 fine grains dispersed in the AC well, with a mean size of 21.24 nm. Electrochemical tests in 6 mol/L KOH solutions indicate that the as-prepared nanocomposites exhibited improved capacitive properties. The specific capacitance(SC) of Fe2O3/AC nanocomposites was up to 188.4 F/g that was derived from both electrochemical double-layer capacitance and pseudo-capacitance, which was 78% larger than that of pristine AC. A symmetric capacitor with Fe2O3/AC nanocomposites as electrode showed an excellent cycling stability. The SC was only reduced by a factor of 9.2% after 2000 cycles at a current density of 1 A/g.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 52072196, 52002200, 52102106, 52202262, 22379081, 22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos. ZR2020QE063, ZR2022ME090, ZR2023QE059. Moreoversupported by the Visiting Scholar Fellowship Funding for Teachers in Shandong Province’s General Undergraduate Institutions
文摘Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
基金Jiangsu University of Science and Technology for providing financial support under the Research start-up fund for the introduction of young talent at Jiangsu University of Science and Technology (Grant no. 1112932205)High-level Talents Program of Shihezi University (RCZK2021B25)。
文摘In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic functional groups and citric acid has the capability to block the surface of g-C_(3)N_(4) from chemical reactivity and activated the surface of g-C_(3)N_(4) for various reactions. Consequently, the agglomeration behavior and controlled shape of g-C_(3)N_(4) has also been achieved. Our experimental results i.e. XRD,TEM, HRTEM, PL, FS, XPS, and PEC have confirmed that the lemon juice mediated and green g-C_(3)N_(4)(L-CN) have good performances and remarkable visible light photocatalytic activities as compared to the chemically synthesized g-C_(3)N_(4)(CN). Furthermore, the small surface area and low charge separation of g-C_(3)N_(4) is upgraded by coupling with Zn O nanoparticles. It is proved that the coupling of Zn O worked as a facilitator and photoelectron modulator to enhance the charge separation of g-C_(3)N_(4). Compared to pristine lemon-mediated green g-C_(3)N_(4)(L-CN), the most active sample 5Zn O/L-CN showed ~ 5-fold improvement in activities for ciprofloxacin(CIP) and methylene blue(MB) degradation. More specifically,the mineralization process and degradation pathways, and the mineralization process of ciprofloxacin(CIP) and methylene blue(MB) are suggested. Finally, our present novel research work will provide new access to synthesize the eco-friendly and bio-caped green g-C_(3)N_(4)nanomaterials and their employment for pollutants degradation and environmental purification.
基金supported by National Nature Science Foundation of China(No.22075230)the financial support of the doctoral research foundation(No.19ZX7102)from Southwest University of Science and Technology。
文摘The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites.
文摘Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.
基金funding from National Natural Science Foundation of China(NSFC Nos.61774157,81771388,61874121,and 61874012)Beijing Natural Science Foundation(No.4182075)the Capital Science and Technology Conditions Platform Project(Project ID:Z181100009518014).
文摘Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.
基金supported by the National Natural Science Foundation of China (21373138)Shanghai Sci. & Tech. Committee (12JC1407200)Program for Changjiang Scholars and Innovative Research Team in University (IRT1269)
文摘An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.
文摘A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano- La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6 %, 12.7 % and 16.3 % higher respectively than those of MC nylon.
基金the support from the University of South Carolina
文摘Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.
文摘Polyethylene-nanocomposites with CaCO3-weight fractions from 0 to 15 wt.% were prepared by in-situ polymerization with Me2Si(Ind)2ZrC12/MAO metallocene catalysts. A high activity especially in the presence of TIBA was observed. The morphology was investigated by using raster electron microscopy (REM) showing that the CaCO3-nanoparticles are uniformly distributed. The melting temperatures and the crystallization temperatures are not much influenced by increasing filler content.
文摘In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic route in the aqueous medium. Phase, crystallinity, surface structure and surface behavior of the synthesized materials were determined by X-ray diffraction(XRD) and Brunauer-Emmett-Teller analysis(BET) techniques. XRD study established formation of good crystalline ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanomaterials. By using intensity of constituent peaks in the XRD pattern, the compositions of nanocomposites were determined. From the BET analysis, the prepared materials show mesoporous behavior, type Ⅳ curves along with H4 hysteresis. The ZnO/ZnS/α-Fe2O3 composite shows the largest surface area among three materials. From the UV-visible spectra, the band gap energy of the materials was determined. Photoluminescence spectra(PL) were used to determine the emission behavior and surface defects in the materials. In PL spectra, the intensity of UV peak of ZnO/ZnS is lowered than that of ZnO while in case of ZnO/ZnS/α-Fe2O3, the intensity further decreased. The visible emission spectra of ZnO/ZnS increased compared with ZnO while in ZnO/ZnS/α-Fe2O3 it is further increased compared with ZnO/ZnS. The as-synthesized materials were used as photocatalysts for the degradation of dye MeO. The photo-degradation data revealed that the ZnO/ZnS/α-Fe2O3 is the best photocatalyst among three specimens for the degradation of dye MeO. The decrease of intensity of UV emission peak and the increase of intensity of visible emission cause the decrease of recombination of electrons and holes which are ultimately responsible for the highest photocatalytic activity of ZnO/ZnS/α-Fe2O3.
文摘Selective laser sintering (SLS) is a new process to prepare the polystyrene (PS)/Al2O3 nanocomposites. In this paper, with different laser power and other processing parameters unchanged, the morphology, density and mechanical properties of the sintered specimens were investigated. It was found that nano-sized inorganic particles are uniformly located in the PS matrix and the maximum density of the sintered specimens with pure PS powder reaches 1.07 g/cm^3, higher than 1.04 g/cm^3 that of the sintered specimens with mixture powder. Due to strengthening and toughness of the nano-sized Al2O3 inorganic particles, the maximum notched impact strength and tensile strength of the sintered part mixed with nano-sized inorganic particles are improved greatly from 7.5 to 12.1 kJ/m^2 and from 6.5 to 31.2 MPa, respectively, under the same sintering condition.
基金NSFC (50272063)The Sci-Tec Project of Jiangmen City Nanocomposites (2006-10 &No .2007-11)
文摘An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various europium ions doping concentrations were carried out. XRD patterns indicate that the samples show an amorphous matrix structure, and the SEM patterns show that the samples present a multi-hole loosen structure, and a rod structure after high-temperature annealling treatment (800 ℃) for 3 h. Raman spectra demonstrate that Y3+ and Eu3+ ions were incorporated into the composites successfully through the sol-gel and post-anneal process. Under the excitation of 387 nm (7F0→5G2) violet light (but not 394 nm (7F0→5L6)), the strongest emission spectrum, the red light, was observed at around 616 nm (5D0→7F2) when the samples were re-treated by annealing at high temperature after 3 months laying aside. Without annealing treatment, the optimized doping mole ratio of Eu ions is about 9%, which is much higher than that doped in SiOglass with the concentration of 3.5%, and it then becomes 5% when the samples are treated by high temperature annealing. In addition, the excitation of 532 nm (7F0→5D1) light can also arouse a comparatively strong emission.
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei Science Center of CAS(2015SRG-HSC048)+1 种基金cooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)CAS-TWAS Scholarship Program~~
文摘We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.
基金Funded by Natural Science Fund of Jiangsu Overseas Research&Training Program for University Prominent Young&Middleaged Teachers and Presidents,the Natural Science Fund of Jiangsu Province(No.BK20130094)the Enterprise-universities Cooperative Innovation Fund of Jiangsu Province(No.BY2014016)
文摘Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexanediamine,folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites.The products were characterized by Fourier-transform infrared spectroscopy,transmission electron microscopy,and vibrating sample magnetometry.Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel.The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel,and thus had potential application in tumor-targeted combination chemotherapy.
基金supported by the National Natural Sci ence Foundation of China(No.50105011)the Foundation for the author by the National Excellent Doctoral Disserta tion of China(200231)+2 种基金the Natural Science Foundation of Shandong Province(Y2004F14)the SRF for ROCS([2002]247),MOE,Chinathe SRF for ROCS(2002[247]),SEM.
文摘Si3N4/TiC nanocomposite ceramics have been fabricated by hot pressing technique with Al2O3 and Y2O3 as additives. The results showed that well dispersed composite powder was carried out by adding dispersant and adjusting pH values of suspensions. Remarkable increase in flexural strength at room temperatures was obtained by adding nanoparticles in Si3N4 matrix with 10% (wt pct) of nano-Si3N4 and 15% of nano-TiC. The flexural strength, fracture toughness and hardness were 1025 MPa, 7.5 MPa.m^1/2 and 15.6 GPa, respectively. The microstructures of materials were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that TiC nanoparticles distribute in the matrix and at the grain boundaries. According to the fracture form, low contents of nano particles could refine matrix grains and lead to the crack deflection as well as crack pinning. The multiplex microstructure was formed by mixing nano-Si3N4 particles. The crack trajectories exhibited crack deflection, rod-like grain bridging and pull-out.
文摘The structure and dielectric properties of (Pb,Sr)Nb2O6-NaNbO3-SiO2 glass-ceramics with different Pb and Sr contents were investigated. The XRD pattern of glass-ceramics without Sr substitution is different from that with Sr substitution, which indicates the existence of orthorhombic phase in the latter ones. TEM bright field observation shows nanosized microstructures, while for samples with Sr, typical eutectic microstrncture with separated crystallized bands is found in the glass matrix. Dielectric properties measurement of the samples indicates an obvious improvement of dielectric constant, dielectric loss, DC field and temperature dependence of dielectric constant when the molar ratio of Sr to Pb is 4:6.
文摘The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation.
基金Project(2011-0015512)supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(MEST)
文摘Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticles having a crystallite size of 20 nm were obtained by controlling the ratio of Fe(II) and Fe(III) precursors.In the second step,Fe3O4 particles were embedded in SiO2 matrix by the hydrolysis and subsequent condensation of the silicic acid solution containing Fe3O4 particles.It was found that the Fe3O4 nanoparticles homogenously disperse in the SiO2 matrix.The Fe3O4:SiO2 nanocomposite exhibited an enhanced thermal stability against oxidation compared with pure Fe3O4.FT-IR analysis indicates the presence of the Si-O-Fe bond in the Fe3O4:SiO2 (1:10,mole fraction) nanocomposite.
文摘To protect the AM60B magnesium alloy from corrosion,a sol-gel coating containing hydroxylated g-C_(3)N_(4)nanoplates was applied.The chemical composition of the hydroxylated g-C_(3)N_(4)nanoplates was investigated using X-ray photoelectron spectroscopy(XPS).The hydroxylation process did not affect the crystal size,specific surface area,pore volume,average pore diameter,and thermal stability of the g-C_(3)N_(4)nanoplates.After incorporating pristine and hydroxylated g-C_(3)N_(4)nanoplates,dense sol-gel coatings were obtained.Transmission electron microscopy(TEM)revealed the uniform distribution of the modified g-C_(3)N_(4)in the coating.The average roughness of the coating was also reduced after adding the modified nanoplates due to the decreased aggregation tendency.Electrochemical impedance spectroscopy(EIS)examinations in simulated acid rain revealed a significant improvement in the anticorrosion properties of the sol-gel film after the addition of the modified g-C_(3)N_(4)due to the chemical bonding of the coating to the nanoplates.
基金Supported by the National Natural Science Foundation of China(No.21271138)the Natural Science Foundation of Tianjin City, China(No.10JCZDJC21500)
文摘Fe2O3/active carbon(Fe2O3/AC) nanocomposites were readily fabricated by pyrolyzing Fe3+ impregnated active carbon in a nitrogen atmosphere. The as-prepared composites were studied by X-ray powder diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). The capacitive property of the composites was investigated by cyclic voltammetry(CV) and galvanostatic charge-discharge test. Physical characterizations show that the γ-Fe2O3 fine grains dispersed in the AC well, with a mean size of 21.24 nm. Electrochemical tests in 6 mol/L KOH solutions indicate that the as-prepared nanocomposites exhibited improved capacitive properties. The specific capacitance(SC) of Fe2O3/AC nanocomposites was up to 188.4 F/g that was derived from both electrochemical double-layer capacitance and pseudo-capacitance, which was 78% larger than that of pristine AC. A symmetric capacitor with Fe2O3/AC nanocomposites as electrode showed an excellent cycling stability. The SC was only reduced by a factor of 9.2% after 2000 cycles at a current density of 1 A/g.