基于密度泛函理论的第一性原理对Ag_3XO_4(X=P,As,V)电子结构及光催化性质进行了对比研究。与Ag_3XO_4相比,Ag_3VO_4较好的光催化稳定性主要源于其结构中Ag-O间较强的作用力增加了对Ag+的控制,而Ag_3VO_4弱的光催化活性与其导带底中存在...基于密度泛函理论的第一性原理对Ag_3XO_4(X=P,As,V)电子结构及光催化性质进行了对比研究。与Ag_3XO_4相比,Ag_3VO_4较好的光催化稳定性主要源于其结构中Ag-O间较强的作用力增加了对Ag+的控制,而Ag_3VO_4弱的光催化活性与其导带底中存在d轨道成份以及较低的价带边势(2.335 V,vs NHE)有关;对Ag_3AsO_4而言,其优于Ag_3XO_4光催化活性的原因基于三个方面:(1)由高分散Ags-Ags杂化轨道构成的导带底能带;(2)窄的带隙(1.91 e V);(3)宽的可见光响应范围以及高的光吸收系数。此外,Ag_3XO_4(X=P,As,V)均为间接带隙半导体光催化材料,其中,Ag_3VO_4有用于分解水制氢研究的可能;上述计算结果与实验结果吻合。展开更多
La 4- x (P 2O 5) 3:Eu x were synthesized from a mixed solution of La(NO 3) 3 and Eu(NO 3) 3 in nitric acid solution(pH=4.5) followed by precipitation on addition of Na 4P 2O 7 solution and calcination at 900 ℃. The p...La 4- x (P 2O 5) 3:Eu x were synthesized from a mixed solution of La(NO 3) 3 and Eu(NO 3) 3 in nitric acid solution(pH=4.5) followed by precipitation on addition of Na 4P 2O 7 solution and calcination at 900 ℃. The products showed a highest excitation peak at 349 nm and highest emission peak at 596 nm .展开更多
Previous studies have shown that the ATP-P2 X4 receptor signaling pathway mediates the activation of the Nod-like receptor family protein 3(NLRP3)inflammasome.The NLRP3 inflammasome may promote renal interstitial infl...Previous studies have shown that the ATP-P2 X4 receptor signaling pathway mediates the activation of the Nod-like receptor family protein 3(NLRP3)inflammasome.The NLRP3 inflammasome may promote renal interstitial inflammation in diabetic nephropathy.As inflammation also plays an important role in the pathogenesis of Parkinson's disease,we hypothesized that the ATP-P2 X4 receptor signaling pathway may activate the NLRP3 inflammasome in Parkinson's disease.A male rat model of Parkinson's disease was induced by stereotactic injection of 6-hydroxydopamine into the pars compacta of the substantia nigra.The P2 X4 receptor and the NLRP3 inflammasome(interleukin-1βand interleukin-18)were activated.Intracerebroventricular injection of the selective P2 X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2 H-benzofuro[3,2-e]-1,4-diazepin-2-one(5-BDBD)or knockdown of P2 X4 receptor expression by si RNA inhibited the activation of the NLRP3 inflammasome and alleviated dopaminergic neurodegeneration and neuroinflammation.Our results suggest that the ATP-P2 X4 receptor signaling pathway mediates NLRP3 inflammasome activation,dopaminergic neurodegeneration,and dopamine levels.These findings reveal a novel role of the ATP-P2 X4 axis in the molecular mechanisms underlying Parkinson's disease,thus providing a new target for treatment.This study was approved by the Animal Ethics Committee of Qingdao University,China,on March 5,2015(approval No.QYFYWZLL 26119).展开更多
文摘基于密度泛函理论的第一性原理对Ag_3XO_4(X=P,As,V)电子结构及光催化性质进行了对比研究。与Ag_3XO_4相比,Ag_3VO_4较好的光催化稳定性主要源于其结构中Ag-O间较强的作用力增加了对Ag+的控制,而Ag_3VO_4弱的光催化活性与其导带底中存在d轨道成份以及较低的价带边势(2.335 V,vs NHE)有关;对Ag_3AsO_4而言,其优于Ag_3XO_4光催化活性的原因基于三个方面:(1)由高分散Ags-Ags杂化轨道构成的导带底能带;(2)窄的带隙(1.91 e V);(3)宽的可见光响应范围以及高的光吸收系数。此外,Ag_3XO_4(X=P,As,V)均为间接带隙半导体光催化材料,其中,Ag_3VO_4有用于分解水制氢研究的可能;上述计算结果与实验结果吻合。
文摘La 4- x (P 2O 5) 3:Eu x were synthesized from a mixed solution of La(NO 3) 3 and Eu(NO 3) 3 in nitric acid solution(pH=4.5) followed by precipitation on addition of Na 4P 2O 7 solution and calcination at 900 ℃. The products showed a highest excitation peak at 349 nm and highest emission peak at 596 nm .
基金supported by the National Natural Science Foundation of China,No.81971192(to AMX)。
文摘Previous studies have shown that the ATP-P2 X4 receptor signaling pathway mediates the activation of the Nod-like receptor family protein 3(NLRP3)inflammasome.The NLRP3 inflammasome may promote renal interstitial inflammation in diabetic nephropathy.As inflammation also plays an important role in the pathogenesis of Parkinson's disease,we hypothesized that the ATP-P2 X4 receptor signaling pathway may activate the NLRP3 inflammasome in Parkinson's disease.A male rat model of Parkinson's disease was induced by stereotactic injection of 6-hydroxydopamine into the pars compacta of the substantia nigra.The P2 X4 receptor and the NLRP3 inflammasome(interleukin-1βand interleukin-18)were activated.Intracerebroventricular injection of the selective P2 X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2 H-benzofuro[3,2-e]-1,4-diazepin-2-one(5-BDBD)or knockdown of P2 X4 receptor expression by si RNA inhibited the activation of the NLRP3 inflammasome and alleviated dopaminergic neurodegeneration and neuroinflammation.Our results suggest that the ATP-P2 X4 receptor signaling pathway mediates NLRP3 inflammasome activation,dopaminergic neurodegeneration,and dopamine levels.These findings reveal a novel role of the ATP-P2 X4 axis in the molecular mechanisms underlying Parkinson's disease,thus providing a new target for treatment.This study was approved by the Animal Ethics Committee of Qingdao University,China,on March 5,2015(approval No.QYFYWZLL 26119).