The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon ...The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon monoxide poisoning with intermediates before the complete transformation of alcohol to CO_(2).Herein,we present hierarchical AgAu bimetallic nanoarchitectures for ethanol electrooxidation,which were fabricated via a partial galvanic reduction reaction between Ag and HAuCl_(4).The ethanol electrooxidation performance of the optimal AgAu nanohybrid was increased to 1834 mA mg^(‒1),which is almost 10 times higher than that of the pristine Au catalyst(190 mA mg^(‒1))in alkaline solutions.This was achieved by introducing Ag into the Au catalyst and controlling the time of the replacement reaction.The heterostructure also presents a higher current density than that of commercial Pt/C(1574 mA mg^(‒1)).Density functional theory calculations revealed that the enhanced activity and stability may stem from unavoidable defects on the surface of the integrated AgAu nanoarchitectures.Ethanol oxidation reactions over these defects are more energetically favorable,which facilitates the oxidative removal of carbonaceous poison and boosts the combination with radicals on adjacent Au active sites.展开更多
Significant amplification of surface enhanced Raman scattering(SERS)signals can be achieved mainly by the electric field enhancement in metal core-shell nanostructures,and the enhanced magnetic field is rarely studied...Significant amplification of surface enhanced Raman scattering(SERS)signals can be achieved mainly by the electric field enhancement in metal core-shell nanostructures,and the enhanced magnetic field is rarely studied.In this study,we prepared multi-gap Au/AgAu core-shell hybrid nanostructures by using gold nanocup as the core.The overgrowth processes to grow one,two,and three layers of AgAu hybrid nanoshells can produce Au/AgAu^(1),Au/AgAu^(2),and Au/AgAu^(3) heteronanostructures.The strong plasmon coupling between the core and shell leads to significant electromagnetic field enhancement.Under the synergistic effect of electromagnetic plasmon resonance and plasmon coupling,Au/AgAu core-shell hybrid nanostructures exhibit excellent SERS signals.We also investigate the effect of the interstitial position of the rhodamine B(RhB)molecule on Raman enhancement in Au/AgAu~3 heteronanostructures.This study can provide new ideas for the synthesis of multi-gap Raman signal amplifiers based on magnetic plasmon coupling.展开更多
文摘The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon monoxide poisoning with intermediates before the complete transformation of alcohol to CO_(2).Herein,we present hierarchical AgAu bimetallic nanoarchitectures for ethanol electrooxidation,which were fabricated via a partial galvanic reduction reaction between Ag and HAuCl_(4).The ethanol electrooxidation performance of the optimal AgAu nanohybrid was increased to 1834 mA mg^(‒1),which is almost 10 times higher than that of the pristine Au catalyst(190 mA mg^(‒1))in alkaline solutions.This was achieved by introducing Ag into the Au catalyst and controlling the time of the replacement reaction.The heterostructure also presents a higher current density than that of commercial Pt/C(1574 mA mg^(‒1)).Density functional theory calculations revealed that the enhanced activity and stability may stem from unavoidable defects on the surface of the integrated AgAu nanoarchitectures.Ethanol oxidation reactions over these defects are more energetically favorable,which facilitates the oxidative removal of carbonaceous poison and boosts the combination with radicals on adjacent Au active sites.
基金Supported by the National Natural Science Foundation of China(12274379,11904332 and 11904270)。
文摘Significant amplification of surface enhanced Raman scattering(SERS)signals can be achieved mainly by the electric field enhancement in metal core-shell nanostructures,and the enhanced magnetic field is rarely studied.In this study,we prepared multi-gap Au/AgAu core-shell hybrid nanostructures by using gold nanocup as the core.The overgrowth processes to grow one,two,and three layers of AgAu hybrid nanoshells can produce Au/AgAu^(1),Au/AgAu^(2),and Au/AgAu^(3) heteronanostructures.The strong plasmon coupling between the core and shell leads to significant electromagnetic field enhancement.Under the synergistic effect of electromagnetic plasmon resonance and plasmon coupling,Au/AgAu core-shell hybrid nanostructures exhibit excellent SERS signals.We also investigate the effect of the interstitial position of the rhodamine B(RhB)molecule on Raman enhancement in Au/AgAu~3 heteronanostructures.This study can provide new ideas for the synthesis of multi-gap Raman signal amplifiers based on magnetic plasmon coupling.