The preparation of TiO2/poly(L-lactide-co-ε-caprolactone)(PLCL) nanocomposites and their properties were reported.TiO2nanoparticles were surface modified by ring-opening polymerization of ε-caprolactone(ε-CL)...The preparation of TiO2/poly(L-lactide-co-ε-caprolactone)(PLCL) nanocomposites and their properties were reported.TiO2nanoparticles were surface modified by ring-opening polymerization of ε-caprolactone(ε-CL).The resulting poly(ε-caprolactone)-grafted TiO2(g-TiO2) was characterized by Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and transmission electron microscopy(TEM).The g-TiO2can be uniformly dispersed in chloroform and the g-TiO2/PLCL nanocomposites were successfully fabricated through solvent-casting method.The effects of the content of g-TiO2nanoparticles on tensile properties and shape memory properties were investigated.A significant improvement in the tensile properties of the 5% g-TiO2/PLCL mass fraction nanocomposite is obtained:an increase of 113% in the tensile strength and an increase of 11% in the elongation at break over pure PLCL polymer.The g-TiO2/PLCL nanocomposites with a certain amount of g-TiO2content have better shape memory properties than pure PLCL polymer.The g-TiO2nanoparticles play an additional physical crosslinks which are contributed to improvement of the shape memory properties.展开更多
Given the nonuse of TiO2 nanoparticles as the reinforcement of AA2024 alloy in fabricating composites by ex-situ casting methods,it was decided to process the AA2024−xTiO2(np)(x=0,0.5 and 1 vol.%)nanocomposites by emp...Given the nonuse of TiO2 nanoparticles as the reinforcement of AA2024 alloy in fabricating composites by ex-situ casting methods,it was decided to process the AA2024−xTiO2(np)(x=0,0.5 and 1 vol.%)nanocomposites by employing the stir casting method.The structural properties of the produced samples were then investigated by optical microscopy and scanning electron microscopy;their mechanical properties were also addressed by hardness and tensile tests.The results showed that adding 1 vol.%TiO2 nanoparticles reduced the grain size and dendrite arm spacing by about 66%and 31%,respectively.Also,hardness,ultimate tensile strength,yield strength,and elongation of AA2024−1vol.%TiO2(np)composite were increased by about 25%,28%,4%and 163%,respectively,as compared to those of the monolithic component.The agglomerations of nanoparticles in the structure of nanocomposites were found to be a factor weakening the strength against the strengthening mechanisms.Some agglomerations of nanoparticles in the matrix were detected on the fractured surfaces of the tension test specimens.展开更多
An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belt...An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m (BiOBr)/m (TiO2) were discussed in order to get the best photocatalytie activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism ofphotocatalytic enhancement was proposed.展开更多
Titanium dioxide/ kaolinite nanocomposite was prepared by the sol-gel method, with layered kaolinite as a substrate and Ti ( OC4H9 )4 as a precursor. The effects of hydrolysis, drying and calcination on the producti...Titanium dioxide/ kaolinite nanocomposite was prepared by the sol-gel method, with layered kaolinite as a substrate and Ti ( OC4H9 )4 as a precursor. The effects of hydrolysis, drying and calcination on the production of nanometric titanium dioxide were discussed. The optimal conditions for preparation were" bbtained through experiments. The 1- 10 nrn thick monolayer anatase nano TiO2 crystal was produced under the conditions as follows: hydrolyzed at 37-42 ℃ for 4 h, dried at 70-80 ℃ for 1 h, and calcined at 550-650℃ for 3 h. The rate of degradation of 40 mg/ L azo dye and 20 mg/ L acid red dye can reuch 96% and 81.45%, respectively.展开更多
One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface ...One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface contact in the fabricated nanocomposite greatly influences the charge transfer and separation so as to determine the final photocatalytic activities.However,the role of interface contact is often neglected,and is rarely reported to date.Hence,it is possible to further enhance the photocatalytic activity of g‐C3N4‐based nanocomposite by improving the interfacial connection.Herein,phosphate-oxygen(P-O)bridged TiO2/g‐C3N4nanocomposites were successfully synthesized using a simple wet chemical method,and the effects of the P-O functional bridges on the photogenerated charge separation and photocatalytic activity for pollutant degradation and CO2reduction were investigated.The photocatalytic activity of g‐C3N4was greatly improved upon coupling with an appropriate amount of nanocrystalline TiO2,especially with P-O bridged TiO2.Atmosphere‐controlled steady‐state surface photovoltage spectroscopy and photoluminescence spectroscopy analyses revealed clearly the enhancement of photogenerated charge separation of g‐C3N4upon coupling with the P-O bridged TiO2,resulting from the built P-O bridges between TiO2and g‐C3N4so as to promote effective transfer of excited electrons from g‐C3N4to TiO2.This enhancement was responsible for the improved photoactivity of the P-O bridged TiO2/g‐C3N4nanocomposite,which exhibited three‐time photocatalytic activity enhancement for2,4‐dichlorophenol degradation and CO2reduction compared with bare g‐C3N4.Furthermore,radical‐trapping experiments revealed that the·OH species formed as hole‐modulated direct intermediates dominated the photocatalytic degradation of2,4‐dichlorophenol.This work provides a feasible strategy for the design and synthesis of high‐performance g‐C3N4‐based nanocomposite photocatalysts for pollutant degradation and CO2reduction.展开更多
A resistive humidity sensor was prepared based on sodium polystyrenesulfonate (NaPSS)/TiO2 nanocomposites, and its electrical response to humidity was examined. The sensor exhibits better linearity, smaller hysteresis...A resistive humidity sensor was prepared based on sodium polystyrenesulfonate (NaPSS)/TiO2 nanocomposites, and its electrical response to humidity was examined. The sensor exhibits better linearity, smaller hysteresis (< 4% RH) and quicker response (absorption: less than 2 s; desorption: less than 20 s) in comparison with sensor composed of NaPSS. The effect of concentration of NaPSS and TiO2 on humidity response of sensors was discussed.展开更多
Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and super...Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.展开更多
The synthesis and characterization of a new nanocomposite material that was prepared from recycled expanded polystyrene (EPS) and titanium dioxide (TiO2) is reported here. The EPS was obtained from chemical reagent bo...The synthesis and characterization of a new nanocomposite material that was prepared from recycled expanded polystyrene (EPS) and titanium dioxide (TiO2) is reported here. The EPS was obtained from chemical reagent box insulation. To obtain the nanocomposite, these materials were dispersed in a solvent, mixed with TiCl4 and heated. The resulting new material was characterized with SEM, TEM, TGA, BET, Raman and IR techniques. The Raman and IR spectra provided complementary information regarding the structure of the nanocomposite. The Raman spectra were used to identify the crystalline structure of TiO2 in the nanocomposite. In contrast, the IR spectra were used to identify the organic portion of the nanocomposite. The TEM images indicated that the nanocomposites had an average particle size of 6 - 12 nm. In addition, the adsorption and photocatalytic properties of the new material were evaluated. The EPS/TiO2 nanocomposite was efficient at degrading methylene blue (MB) dye solutions under UV irradiation. Furthermore, according to thermal analysis, this material had greater polymer stability due to the incorporation of TiO2.展开更多
Composites consisting of carbopol (CP) and ceramic titanium dioxide nanoparticles, TiO2 have been investigated. The CP-TiO2, organic-inorganic hybrid composites have been prepared in DMF by heating the mixture with a ...Composites consisting of carbopol (CP) and ceramic titanium dioxide nanoparticles, TiO2 have been investigated. The CP-TiO2, organic-inorganic hybrid composites have been prepared in DMF by heating the mixture with a constant rate of 1。C/min, up to 30。C, 45。C, 60。C, 80。C, 100。C and 120。C. Proprieties such as absorption, structure and external aspect of the obtained materials were investigated by Uv-vis, FTIR, DRX and SEM analyses. The X-ray diffraction patterns confirmed that the TiO2 nanoparticles maintained their original tetragonal anatase-type crystalline structure in the composites. The chemical structure of the obtained materials was determined by ATR-FTIR spectroscopy. The influence of TiO2 nanoparticles on the thermal proprieties of carbopol matrix was investigated using thermo-gravimetric analysis and differential scanning calorimetry. The glass transition temperature (Tg) of the carbopol matrix was considerably increased by the presence of ceramic feller nanoparticles and its thermal stability was significantly improved. Furthermore the water loss which represents 7.56% of the weight loss in pure CP at 100。C was avoided in the CP-TiO2 nanocomposites at this same temperature. This important finding revealed that ceramic fellers blocked the water loss in the modified carbopol nanocomposites, which stayed stable till 200。C.展开更多
Polysulfonamide(PSA)was synthesized at room temperature,the polymerization based on terephthaloyl chloride and 3,3’-diaminodiphenylsulfone in the common solvent N,N-Dimethyl-acetamide(DMAc).Polysulfonamide/titanium o...Polysulfonamide(PSA)was synthesized at room temperature,the polymerization based on terephthaloyl chloride and 3,3’-diaminodiphenylsulfone in the common solvent N,N-Dimethyl-acetamide(DMAc).Polysulfonamide/titanium oxide nanocomposites were prepared by sol-gel method.Tetrabutyl titanate(TBT)was added into the polysulfonamide solution,at the same time,some water was mixed to make the TBT hydrolyze.In the process,hydrochloric acid was used to catalyze the reaction.The polysulfonamide chemistry structure was characterized by FT-IR spectrum.Atomic force microscopy(AFM)was employed to observe the microstructure of the composite film.The thermal property was investigated by TGA.The results show that we have succeeded to synthesize the polysulfonamide,TiO2 particles were well distributed in the composite film and average size was about 20 nm on average,the heat-resistance of nanocomposite was batter than the pure polysulfonamide.展开更多
Flexible polymer-based dye-sensitized solar cells (DSSCs) offer promising potential for lightweight, cost-effective and versatile photovoltaic applications. However, the critical challenge in their widespread applicat...Flexible polymer-based dye-sensitized solar cells (DSSCs) offer promising potential for lightweight, cost-effective and versatile photovoltaic applications. However, the critical challenge in their widespread applications is the weak thermal stability of most polymeric substrates, which can only withstand a maximum temperature processing of 150˚C. In this study, a facile and low-cost strategy is proposed to develop at low temperature DSSC flexible photoanode based on a polymeric matrix. Highly porous nanocomposites fibrous mats composed of polyethylene terephthalate (PET) and titanium dioxide (TiO2) nanobars were prepared through an electrospinning process using different configurations (uniaxial electrospinning, coaxial electrospinning, and electrospray-assisted electrospinning). These techniques enabled precise control of the microstructure and the positioning of TiO2 within the composite nanofibers. Therefore, the as-produced photoanodes were loaded with N719 dye and tested in DSSC prototype using iodide-triiodide electrolyte and platinum (Pt) coated counter electrode. The results show that incorporating TiO2 on the fiber surface through the electrospray-assisted electrospinning enhanced the performance of the nanofiber composite, leading to improved dye loading capacity, electron transfer efficiency and photovoltaic performance.展开更多
Poly(methyl methacrylate)-titania(PMMA-TiO 2) nanocomposites were synthesized from tetrabutyl titanate(TBT) and methyl methacrylate(MMA) by sol-gel process using methacryloyloxypropyl trimethoxy siliane(MPTMS) as coup...Poly(methyl methacrylate)-titania(PMMA-TiO 2) nanocomposites were synthesized from tetrabutyl titanate(TBT) and methyl methacrylate(MMA) by sol-gel process using methacryloyloxypropyl trimethoxy siliane(MPTMS) as coupling agent and dilute hydrochloric acid as catalyst. Reaction parameters affecting the character of the products, such as the concentration of HCl, amount of water and coupling agent were discussed. The results showed that considerable good product can be obtained when the concentration of HCl is (0.3±0.02) mol/L, n(TBT)∶n(H 2O)>5∶1 and n(MPTMS)/n(TBT)>1. The chemical structure of PMMA-TiO 2 was characterized by IR, TEM and TG/DTA.展开更多
A lipophilic silica/metatitantic acid(denoted as Si O2/H2 TiO 3) nanocomposite was synthesized by hydrothermal reaction with surface-modified Si O2 as the lipophilic carrier. As-synthesized Si O2/H2 TiO 3nanocomposi...A lipophilic silica/metatitantic acid(denoted as Si O2/H2 TiO 3) nanocomposite was synthesized by hydrothermal reaction with surface-modified Si O2 as the lipophilic carrier. As-synthesized Si O2/H2 TiO 3nanocomposite was used as a catalyst to promote the aquathermolysis reaction of extra-heavy crude oil thereby facilitating the recovering from the deep reservoirs at lowered temperature. The catalytic performance of the as-synthesized Si O2/H2 TiO 3catalyst for the aquathermolysis reaction of the heavy oil at a moderate temperature of 150 °C was evaluated in relation to the structural characterizations by TEM,FTIR,XRD and FESEM as well as the determination of the specific surface area by N2adsorption–desorption method. Findings indicate that as-synthesized Si O2/H2 TiO 3nanocomposite exhibits an average size of about 20 nm as well as good lipophilicity and dispersibility in various organic solvents; and it shows good catalytic performance for the aquathermolysis reaction of the extra-heavy oil extracted from Shengli Oilfield of China. Namely,the assynthesized Si O2/H2 TiO 3catalyst is capable of significantly reducing the viscosity of the tested heavy oil from58,000 c P to 16,000 c P(referring to a viscosity reduction rate of 72.41%) at a mass fraction of 0.5%,a reaction temperature of 150 °C and a reaction time of 36 h,showing potential application in downhole upgrading heavy crude oils.展开更多
基金Project(50903023) supported by the National Natural Science Foundation of ChinaProject(HEUCF201210005) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2010RFQXG037) supported by Harbin Special Fund for Innovation Talents of Science and Technology,China
文摘The preparation of TiO2/poly(L-lactide-co-ε-caprolactone)(PLCL) nanocomposites and their properties were reported.TiO2nanoparticles were surface modified by ring-opening polymerization of ε-caprolactone(ε-CL).The resulting poly(ε-caprolactone)-grafted TiO2(g-TiO2) was characterized by Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and transmission electron microscopy(TEM).The g-TiO2can be uniformly dispersed in chloroform and the g-TiO2/PLCL nanocomposites were successfully fabricated through solvent-casting method.The effects of the content of g-TiO2nanoparticles on tensile properties and shape memory properties were investigated.A significant improvement in the tensile properties of the 5% g-TiO2/PLCL mass fraction nanocomposite is obtained:an increase of 113% in the tensile strength and an increase of 11% in the elongation at break over pure PLCL polymer.The g-TiO2/PLCL nanocomposites with a certain amount of g-TiO2content have better shape memory properties than pure PLCL polymer.The g-TiO2nanoparticles play an additional physical crosslinks which are contributed to improvement of the shape memory properties.
文摘Given the nonuse of TiO2 nanoparticles as the reinforcement of AA2024 alloy in fabricating composites by ex-situ casting methods,it was decided to process the AA2024−xTiO2(np)(x=0,0.5 and 1 vol.%)nanocomposites by employing the stir casting method.The structural properties of the produced samples were then investigated by optical microscopy and scanning electron microscopy;their mechanical properties were also addressed by hardness and tensile tests.The results showed that adding 1 vol.%TiO2 nanoparticles reduced the grain size and dendrite arm spacing by about 66%and 31%,respectively.Also,hardness,ultimate tensile strength,yield strength,and elongation of AA2024−1vol.%TiO2(np)composite were increased by about 25%,28%,4%and 163%,respectively,as compared to those of the monolithic component.The agglomerations of nanoparticles in the structure of nanocomposites were found to be a factor weakening the strength against the strengthening mechanisms.Some agglomerations of nanoparticles in the matrix were detected on the fractured surfaces of the tension test specimens.
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB239300,No.2012CB720100)National Natural Science Foundation of China(No.21406164,No.21466035)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110032110037,No.20130032120019)
文摘An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nano- belts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m (BiOBr)/m (TiO2) were discussed in order to get the best photocatalytie activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism ofphotocatalytic enhancement was proposed.
基金Funded by National "973" Plan Research Project ( No.2004CB619204) and Educational Ministry Scientific and Technologi-cal Research Key Project (No.02052)
文摘Titanium dioxide/ kaolinite nanocomposite was prepared by the sol-gel method, with layered kaolinite as a substrate and Ti ( OC4H9 )4 as a precursor. The effects of hydrolysis, drying and calcination on the production of nanometric titanium dioxide were discussed. The optimal conditions for preparation were" bbtained through experiments. The 1- 10 nrn thick monolayer anatase nano TiO2 crystal was produced under the conditions as follows: hydrolyzed at 37-42 ℃ for 4 h, dried at 70-80 ℃ for 1 h, and calcined at 550-650℃ for 3 h. The rate of degradation of 40 mg/ L azo dye and 20 mg/ L acid red dye can reuch 96% and 81.45%, respectively.
基金supported by the National Natural Science Foundation of China(U1401245,91622119)the Program for Innovative Research Team in Chinese Universities(IRT1237)+1 种基金the Research Project of Chinese Ministry of Education(213011A)the Science Foundation for Excellent Youth of Harbin City of China(2014RFYXJ002)~~
文摘One of the most general methods to enhance the separation of photogenerated carriers for g‐C3N4is to construct a suitable heterojunctional composite,according to the principle of matching energy levels.The interface contact in the fabricated nanocomposite greatly influences the charge transfer and separation so as to determine the final photocatalytic activities.However,the role of interface contact is often neglected,and is rarely reported to date.Hence,it is possible to further enhance the photocatalytic activity of g‐C3N4‐based nanocomposite by improving the interfacial connection.Herein,phosphate-oxygen(P-O)bridged TiO2/g‐C3N4nanocomposites were successfully synthesized using a simple wet chemical method,and the effects of the P-O functional bridges on the photogenerated charge separation and photocatalytic activity for pollutant degradation and CO2reduction were investigated.The photocatalytic activity of g‐C3N4was greatly improved upon coupling with an appropriate amount of nanocrystalline TiO2,especially with P-O bridged TiO2.Atmosphere‐controlled steady‐state surface photovoltage spectroscopy and photoluminescence spectroscopy analyses revealed clearly the enhancement of photogenerated charge separation of g‐C3N4upon coupling with the P-O bridged TiO2,resulting from the built P-O bridges between TiO2and g‐C3N4so as to promote effective transfer of excited electrons from g‐C3N4to TiO2.This enhancement was responsible for the improved photoactivity of the P-O bridged TiO2/g‐C3N4nanocomposite,which exhibited three‐time photocatalytic activity enhancement for2,4‐dichlorophenol degradation and CO2reduction compared with bare g‐C3N4.Furthermore,radical‐trapping experiments revealed that the·OH species formed as hole‐modulated direct intermediates dominated the photocatalytic degradation of2,4‐dichlorophenol.This work provides a feasible strategy for the design and synthesis of high‐performance g‐C3N4‐based nanocomposite photocatalysts for pollutant degradation and CO2reduction.
基金This work was supported by the National and Zhejiang Provincial Natural Science Foundation of China (No. 59773012).
文摘A resistive humidity sensor was prepared based on sodium polystyrenesulfonate (NaPSS)/TiO2 nanocomposites, and its electrical response to humidity was examined. The sensor exhibits better linearity, smaller hysteresis (< 4% RH) and quicker response (absorption: less than 2 s; desorption: less than 20 s) in comparison with sensor composed of NaPSS. The effect of concentration of NaPSS and TiO2 on humidity response of sensors was discussed.
基金Project(2016YFE0205700)supported by the National Key Research and Development Program of ChinaProject(18JCYBJC18000)supported by the Natural Science Foundation of Tianjin City,China。
文摘Co−TiO2 nanocomposite films were prepared via magnetron sputtering at various substrate temperatures.The films comprise Co particles dispersed in an amorphous TiO2 matrix and exhibit coexisting ferromagnetic and superparamagnetic properties.When the substrate temperature increases from room temperature to 400℃,Co particles gradually grow,and the degree of Co oxidation significantly decreases.Consequently,the saturation magnetization increases from 0.13 to 0.43 T at the same Co content by increasing the substrate temperature from room temperature to 400℃.At a high substrate temperature,conductive pathways form among some of the clustered Co particles.Thus,resistivity rapidly declines from 1600 to 76μΩ·m.The magnetoresistive characteristic of Co−TiO2 films is achieved even at resistivity of as low as 76μΩ·m.These results reveal that the obtained nanocomposite films have low Co oxidation,high magnetization and magnetoresistance at room temperature.
文摘The synthesis and characterization of a new nanocomposite material that was prepared from recycled expanded polystyrene (EPS) and titanium dioxide (TiO2) is reported here. The EPS was obtained from chemical reagent box insulation. To obtain the nanocomposite, these materials were dispersed in a solvent, mixed with TiCl4 and heated. The resulting new material was characterized with SEM, TEM, TGA, BET, Raman and IR techniques. The Raman and IR spectra provided complementary information regarding the structure of the nanocomposite. The Raman spectra were used to identify the crystalline structure of TiO2 in the nanocomposite. In contrast, the IR spectra were used to identify the organic portion of the nanocomposite. The TEM images indicated that the nanocomposites had an average particle size of 6 - 12 nm. In addition, the adsorption and photocatalytic properties of the new material were evaluated. The EPS/TiO2 nanocomposite was efficient at degrading methylene blue (MB) dye solutions under UV irradiation. Furthermore, according to thermal analysis, this material had greater polymer stability due to the incorporation of TiO2.
文摘Composites consisting of carbopol (CP) and ceramic titanium dioxide nanoparticles, TiO2 have been investigated. The CP-TiO2, organic-inorganic hybrid composites have been prepared in DMF by heating the mixture with a constant rate of 1。C/min, up to 30。C, 45。C, 60。C, 80。C, 100。C and 120。C. Proprieties such as absorption, structure and external aspect of the obtained materials were investigated by Uv-vis, FTIR, DRX and SEM analyses. The X-ray diffraction patterns confirmed that the TiO2 nanoparticles maintained their original tetragonal anatase-type crystalline structure in the composites. The chemical structure of the obtained materials was determined by ATR-FTIR spectroscopy. The influence of TiO2 nanoparticles on the thermal proprieties of carbopol matrix was investigated using thermo-gravimetric analysis and differential scanning calorimetry. The glass transition temperature (Tg) of the carbopol matrix was considerably increased by the presence of ceramic feller nanoparticles and its thermal stability was significantly improved. Furthermore the water loss which represents 7.56% of the weight loss in pure CP at 100。C was avoided in the CP-TiO2 nanocomposites at this same temperature. This important finding revealed that ceramic fellers blocked the water loss in the modified carbopol nanocomposites, which stayed stable till 200。C.
文摘Polysulfonamide(PSA)was synthesized at room temperature,the polymerization based on terephthaloyl chloride and 3,3’-diaminodiphenylsulfone in the common solvent N,N-Dimethyl-acetamide(DMAc).Polysulfonamide/titanium oxide nanocomposites were prepared by sol-gel method.Tetrabutyl titanate(TBT)was added into the polysulfonamide solution,at the same time,some water was mixed to make the TBT hydrolyze.In the process,hydrochloric acid was used to catalyze the reaction.The polysulfonamide chemistry structure was characterized by FT-IR spectrum.Atomic force microscopy(AFM)was employed to observe the microstructure of the composite film.The thermal property was investigated by TGA.The results show that we have succeeded to synthesize the polysulfonamide,TiO2 particles were well distributed in the composite film and average size was about 20 nm on average,the heat-resistance of nanocomposite was batter than the pure polysulfonamide.
文摘Flexible polymer-based dye-sensitized solar cells (DSSCs) offer promising potential for lightweight, cost-effective and versatile photovoltaic applications. However, the critical challenge in their widespread applications is the weak thermal stability of most polymeric substrates, which can only withstand a maximum temperature processing of 150˚C. In this study, a facile and low-cost strategy is proposed to develop at low temperature DSSC flexible photoanode based on a polymeric matrix. Highly porous nanocomposites fibrous mats composed of polyethylene terephthalate (PET) and titanium dioxide (TiO2) nanobars were prepared through an electrospinning process using different configurations (uniaxial electrospinning, coaxial electrospinning, and electrospray-assisted electrospinning). These techniques enabled precise control of the microstructure and the positioning of TiO2 within the composite nanofibers. Therefore, the as-produced photoanodes were loaded with N719 dye and tested in DSSC prototype using iodide-triiodide electrolyte and platinum (Pt) coated counter electrode. The results show that incorporating TiO2 on the fiber surface through the electrospray-assisted electrospinning enhanced the performance of the nanofiber composite, leading to improved dye loading capacity, electron transfer efficiency and photovoltaic performance.
文摘Poly(methyl methacrylate)-titania(PMMA-TiO 2) nanocomposites were synthesized from tetrabutyl titanate(TBT) and methyl methacrylate(MMA) by sol-gel process using methacryloyloxypropyl trimethoxy siliane(MPTMS) as coupling agent and dilute hydrochloric acid as catalyst. Reaction parameters affecting the character of the products, such as the concentration of HCl, amount of water and coupling agent were discussed. The results showed that considerable good product can be obtained when the concentration of HCl is (0.3±0.02) mol/L, n(TBT)∶n(H 2O)>5∶1 and n(MPTMS)/n(TBT)>1. The chemical structure of PMMA-TiO 2 was characterized by IR, TEM and TG/DTA.
基金supported by the National Natural Science Foundation of China (grant Nos.21371047 and 21471047)
文摘A lipophilic silica/metatitantic acid(denoted as Si O2/H2 TiO 3) nanocomposite was synthesized by hydrothermal reaction with surface-modified Si O2 as the lipophilic carrier. As-synthesized Si O2/H2 TiO 3nanocomposite was used as a catalyst to promote the aquathermolysis reaction of extra-heavy crude oil thereby facilitating the recovering from the deep reservoirs at lowered temperature. The catalytic performance of the as-synthesized Si O2/H2 TiO 3catalyst for the aquathermolysis reaction of the heavy oil at a moderate temperature of 150 °C was evaluated in relation to the structural characterizations by TEM,FTIR,XRD and FESEM as well as the determination of the specific surface area by N2adsorption–desorption method. Findings indicate that as-synthesized Si O2/H2 TiO 3nanocomposite exhibits an average size of about 20 nm as well as good lipophilicity and dispersibility in various organic solvents; and it shows good catalytic performance for the aquathermolysis reaction of the extra-heavy oil extracted from Shengli Oilfield of China. Namely,the assynthesized Si O2/H2 TiO 3catalyst is capable of significantly reducing the viscosity of the tested heavy oil from58,000 c P to 16,000 c P(referring to a viscosity reduction rate of 72.41%) at a mass fraction of 0.5%,a reaction temperature of 150 °C and a reaction time of 36 h,showing potential application in downhole upgrading heavy crude oils.