The objects of the investigation were uniformly Ag~+ doped Hg_(0.76)Cd_(0.24) Te mercury chalcogenide monocrystals obtained by ion implantation with subsequent thermal annealing over 20 days. After implantation a...The objects of the investigation were uniformly Ag~+ doped Hg_(0.76)Cd_(0.24) Te mercury chalcogenide monocrystals obtained by ion implantation with subsequent thermal annealing over 20 days. After implantation and annealing the conductivity was inverted from n-type with carrier concentration of 10^(16) cm^(-3) to p-type with carrier concentration of ≈ 3.9 × 10^(15) cm^(-3). The investigations of microwave absorption derivative(d P/d H) showed the existence of strong oscillations in the magnetic field for Ag:Hg_(0.76)Cd_(0.24) Te in the temperature range 4.2–12 K. The concentration and effective mass of charge carrier were determined from oscillation period and temperature dependency of oscillation amplitude. We suppose that this phenomenon is similar to the de Haas–van Alphen effect in weakly correlated electron system with imperfect nesting vector.展开更多
文摘The objects of the investigation were uniformly Ag~+ doped Hg_(0.76)Cd_(0.24) Te mercury chalcogenide monocrystals obtained by ion implantation with subsequent thermal annealing over 20 days. After implantation and annealing the conductivity was inverted from n-type with carrier concentration of 10^(16) cm^(-3) to p-type with carrier concentration of ≈ 3.9 × 10^(15) cm^(-3). The investigations of microwave absorption derivative(d P/d H) showed the existence of strong oscillations in the magnetic field for Ag:Hg_(0.76)Cd_(0.24) Te in the temperature range 4.2–12 K. The concentration and effective mass of charge carrier were determined from oscillation period and temperature dependency of oscillation amplitude. We suppose that this phenomenon is similar to the de Haas–van Alphen effect in weakly correlated electron system with imperfect nesting vector.