期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A CLASS OF SIS EPIDEMIC MODEL WITH SATURATION INCIDENCE AND AGE OF INFECTION
1
作者 Yang Junyuan Zhang Fengqin Wang Xiaoyan 《Annals of Differential Equations》 2007年第4期546-551,共6页
Saturating contact rate of individual contacts is crucial in an epidemiology model. A mathematical SIR model with saturation incidence and age of infection is formulated in this paper. In addition, we study the dynami... Saturating contact rate of individual contacts is crucial in an epidemiology model. A mathematical SIR model with saturation incidence and age of infection is formulated in this paper. In addition, we study the dynamical behavior of this model and define the basic reproductive number R0. The authors also prove that the diseased-free equilibrium is globally asymptotically stable if R0 〈 1. The endemic equilibrium is locally asymptotically stable if K1 〉 α and R0 〉 1. 展开更多
关键词 epidemic model age of infection local stability saturation incidence
原文传递
The relationship between controllability, optimal testing resource allocation, and incubation-latent period mismatch as revealed by COVID-19
2
作者 Jeffery Demers William F.Fagan +1 位作者 Sriya Potluri Justin M.Calabrese 《Infectious Disease Modelling》 CSCD 2023年第2期514-538,共25页
The severe shortfall in testing supplies during the initial COVID-19 outbreak and ensuing struggle to manage the pandemic have affirmed the critical importance of optimal supplyconstrained resource allocation strategi... The severe shortfall in testing supplies during the initial COVID-19 outbreak and ensuing struggle to manage the pandemic have affirmed the critical importance of optimal supplyconstrained resource allocation strategies for controlling novel disease epidemics.To address the challenge of constrained resource optimization for managing diseases with complications like pre-and asymptomatic transmission,we develop an integro partial differential equation compartmental disease model which incorporates realistic latent,incubation,and infectious period distributions along with limited testing supplies for identifying and quarantining infected individuals.Our model overcomes the limitations of typical ordinary differential equation compartmental models by decoupling symptom status from model compartments to allow a more realistic representation of symptom onset and presymptomatic transmission.To analyze the influence of these realistic features on disease controllability,we find optimal strategies for reducing total infection sizes that allocate limited testing resources between‘clinical’testing,which targets symptomatic individuals,and‘non-clinical’testing,which targets non-symptomatic individuals.We apply our model not only to the original,delta,and omicron COVID-19 variants,but also to generically parameterized disease systems with varying mismatches between latent and incubation period distributions,which permit varying degrees of presymptomatic transmission or symptom onset before infectiousness.We find that factors that decrease controllability generally call for reduced levels of non-clinical testing in optimal strategies,while the relationship between incubation-latent mismatch,controllability,and optimal strategies is complicated.In particular,though greater degrees of presymptomatic transmission reduce disease controllability,they may increase or decrease the role of nonclinical testing in optimal strategies depending on other disease factors like transmissibility and latent period length.Importantly,our model allows a spectrum of diseases to be compared within a consistent framework such that lessons learned from COVID-19 can be transferred to resource constrained scenarios in future emerging epidemics and analyzed for optimality. 展开更多
关键词 Testing quarantine control Optimal resource allocation Presymptomatic transmission Latent period Incubation period age of infection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部