期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Unlocking the potential of unlabeled data:Self-supervised machine learning for battery aging diagnosis with real-world field data
1
作者 Qiao Wang Min Ye +4 位作者 Sehriban Celik Zhongwei Deng Bin Li Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 SCIE EI CAS 2024年第12期681-691,共11页
Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constr... Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constrained by the high costs of check-up tests and the scarcity of labeled data.This paper presents a framework utilizing self-supervised machine learning to harness the potential of unlabeled data for diagnosing battery aging in electric vehicles during field operations.We validate our method using battery degradation datasets collected over more than two years from twenty real-world electric vehicles.Our analysis comprehensively addresses cell inconsistencies,physical interpretations,and charging uncertainties in real-world applications.This is achieved through self-supervised feature extraction using random short charging sequences in the main peak of incremental capacity curves.By leveraging inexpensive unlabeled data in a self-supervised approach,our method demonstrates improvements in average root mean square errors of 74.54%and 60.50%in the best and worst cases,respectively,compared to the supervised benchmark.This work underscores the potential of employing low-cost unlabeled data with self-supervised machine learning for effective battery health and safety management in realworld scenarios. 展开更多
关键词 Lithium-ion battery Aging diagnosis Self-supervised Machine learning Unlabeled data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部