Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathema...Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathematical modeling approach, agent-based models have an inherent spatial component with which they can easily describe local interactions and environmental heterogeneity. Furthermore, agent-based model maps interactions among agents inherently to the biological phenomenon by embedding the stochastic nature and dynamics transitions, thereby demonstrating suitability for the development of complex biological processes. Recently, an abundance of literature has presented application of agent-based modeling in the biological system. This review focuses on application of agent-based modeling to progression in simulation of infectious disease in the human immune system and discusses advantages and disadvantages of agent-based modeling application. Finally, potential implementation of agent-based modeling in relation to infectious disease modeling in future research is explored.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
The complexity of large-scale network systems made of a large number of nonlinearly interconnected components is a restrictive facet for their modeling and analysis. In this paper, we propose a framework of hierarchic...The complexity of large-scale network systems made of a large number of nonlinearly interconnected components is a restrictive facet for their modeling and analysis. In this paper, we propose a framework of hierarchical modeling of a complex network system, based on a recursive unsupervised spectral clustering method. The hierarchical model serves the purpose of facilitating the management of complexity in the analysis of real-world critical infrastructures. We exemplify this by referring to the reliability analysis of the 380 kV Italian Power Transmission Network (IPTN). In this work of analysis, the classical component Importance Measures (IMs) of reliability theory have been extended to render them compatible and applicable to a complex distributed network system. By utilizing these extended IMs, the reliability properties of the IPTN system can be evaluated in the framework of the hierarchical system model, with the aim of providing risk managers with information on the risk/safety significance of system structures and components.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
The biological immune system is a complex adaptive system.There are lots of benefits for building the model of the immune system.For biological researchers,they can test some hypotheses about the infection process or ...The biological immune system is a complex adaptive system.There are lots of benefits for building the model of the immune system.For biological researchers,they can test some hypotheses about the infection process or simulate the responses of some drugs.For computer researchers,they can build distributed,robust and fault tolerant networks inspired by the functions of the immune system.This paper provides a comprehensive survey of the literatures on modelling the immune system.From the methodology perspective,the paper compares and analyzes the existing approaches and models,and also demonstrates the focusing research effort on the future immune models in the next few years.展开更多
This paper establishes a very important scientific solution to science of complexity for physicists, and presents a multidisciplinary involved physics and engineering. The innovative solution for complex systems prese...This paper establishes a very important scientific solution to science of complexity for physicists, and presents a multidisciplinary involved physics and engineering. The innovative solution for complex systems presented here is verified on the basis of principles in engineering such as feed-back-system analysis using the classical control theory. This paper proposes that a complex system is a closed-loop system with a negative feedback element and is a solvable problem. A complex system can be analyzed using the system analysis theory in control engineering, and its behavior can be realized using a specially designed simulator.展开更多
In an integrated refining and petrochemical complex,a centralized utility system(CUS)is introduced to integrate the steam demands of production plants.Besides,two sub-utility systems(SUSs)located inside the alkene and...In an integrated refining and petrochemical complex,a centralized utility system(CUS)is introduced to integrate the steam demands of production plants.Besides,two sub-utility systems(SUSs)located inside the alkene and refinery plants,respectively,can satisfy the shaft demands.It is difficult to determine the steam production of the CUS because the steam demands of the alkene and refinery plants also depend on the design and operation of the SUSs.To explore the complicated interaction between the CUS and SUSs,we proposed a mixed-integer nonlinear programming(MINLP)model for the design and optimization of multiple interconnected utility systems to minimize the total annualized cost(TAC).An extended superstructure was suggested to contain multiple inter-plant connected steam pipe alternatives between the CUS and SUSs.A more accurate model of the complex steam turbine was proposed.Then the proposed MINLP framework is applied to a new integrated refining and petrochemical complex.Two scenarios are investigated in the case study to explore the effect of steam main temperatures on system configurations and operating parameters.By optimizing the main temperatures,a TAC of$2.7 million can be saved.Judging from the results of the two scenarios,the feasibility and effectiveness of the proposed framework for the design and optimization of multiple interconnected utility systems have been demonstrated.展开更多
The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(Ca...The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.展开更多
Based on the complex network theory,this paper studies the systemic financial risks in China’s financial market.According to the industry classification of the China Securities Regulatory Commission in 2012,the daily...Based on the complex network theory,this paper studies the systemic financial risks in China’s financial market.According to the industry classification of the China Securities Regulatory Commission in 2012,the daily closing prices of 45 listed financial institutions are collected and the daily return rates of each financial institution are measured according to the logarithmic return rate calculation formula.In this paper,the risk spillover value ΔCoVaR is used to measure the contribution degree of each financial institution to systemic risk.Finally,the relationship between the risk spillover valueΔCoVaR and the node topology index of the risk transmission network is investigated by using a regression model,and some policy suggestions are put forward based on the regression results.展开更多
Synchronization is a phenomenon that is ubiquitous in engineering and natural ecosystems.The study of explosive synchronization on a single-layer network gives the critical transition coupling strength that causes exp...Synchronization is a phenomenon that is ubiquitous in engineering and natural ecosystems.The study of explosive synchronization on a single-layer network gives the critical transition coupling strength that causes explosive synchronization.However, no significant findings have been made on multi-layer complex networks.This paper proposes a frequency-weighted Kuramoto model on a two-layer network and the critical coupling strength of explosive synchronization is obtained by both theoretical analysis and numerical validation.It is found that the critical value is affected by the interaction strength between layers and the number of network oscillators.The explosive synchronization will be hindered by enhancing the interaction and promoted by increasing the number of network oscillators.Our results have importance across a range of engineering and biological research fields.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in...In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in order to describe properly the absence of the corresponding type i of state in the system, i.e. when its “share” Pi =0?. Accordingly, a new equation for partitions P (N, m)? in a set of entities into both empty and nonempty subsets was derived. The indistinguishableness of particles (N identical atoms or molecules) makes only sense within a cluster (subset) with the size?0≤ni ≥N. The first-order phase transition is indeed the case of transitions, for example in the simplest interpretation, from completely liquid state?typeL = {n1 =N, n2 = 0} to the completely crystalline state??typeC= {n1 =0, n2 = N }. These partitions are well distinguished from the physical point of view, so they are ‘typed’ differently in the model. Finally, the present developments in the physics of complex systems, in particular the structural relaxation of super-cooled liquids and glasses, are discussed by using such stochastic cluster-based models.展开更多
In this paper, by use of equivalence operators δi and semi-equivalence operators Εi we study the clustering problems of complex systems, present δ (1,3) disconnection principle, dual transformation principle and la...In this paper, by use of equivalence operators δi and semi-equivalence operators Εi we study the clustering problems of complex systems, present δ (1,3) disconnection principle, dual transformation principle and large-scale systems decomposition principle for analizing and operating complex systems, discuss interconnectivity and disconnectivity of complex systems in detail and present some related theorems. Finally, we discuss the levels of systems according to pansystems clustering approach proposed in this paper.展开更多
A system of systems(SoS)composes a set of independent constituent systems(CSs),where the degree of authority to control the independence of CSs varies,depending on different SoS types.Key researchers describe four SoS...A system of systems(SoS)composes a set of independent constituent systems(CSs),where the degree of authority to control the independence of CSs varies,depending on different SoS types.Key researchers describe four SoS types with descending levels of central authority:directed,acknowledged,collaborative and virtual.Although the definitions have been recognized in SoS engineering,what is challenging is the difficulty of translating these definitions into models and simulation environments.Thus,we provide a goal-based method including a mathematical baseline to translate these definitions into more effective agent-based modeling and simulations.First,we construct the theoretical models of CS and SoS.Based on the theoretical models,we analyze the degree of authority influenced by SoS characteristics.Next,we propose a definition of SoS types by quantitatively explaining the degree of authority.Finally,we recognize the differences between acknowledged SoS and collaborative SoS using a migrating waterfowl flock by an agentbased model(ABM)simulation.This paper contributes to the SoS body of knowledge by increasing our understanding of the degree of authority in an SoS,so we may identify suitable SoS types to achieve SoS goals by modeling and simulation.展开更多
Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of inde...Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of independent and interrelating agents. Simulations contribute in estimating and comprehending emerging behaviors that require the development of new regulations for local agents that would make improvements to the system. This paper offers an example of a methodology and a process utilized to develop a simulation model named Befergyonet, an ABM used to conduct computer simulations within a spatio-intertemporal environment. The methodology discussed in this paper is intended solely to stimulate the use of innovative computer programs to simulate complex systems as an approach to represent real world events and may be a methodological guide for readers interested in developing their own ABM.展开更多
The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-simil...The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-similarity, and the mathematical elegance of the Golden Ratio. This research unravels a unique methodological paradigm, emphasizing the omnipresence of the Golden Ratio in shaping system dynamics. The novelty of this study stems from its detailed exposition of self-similarity and interchangeability, transforming them from mere abstract notions into actionable, concrete insights. By highlighting the fractal nature of the Golden Ratio, the implications of these revelations become far-reaching, heralding new avenues for both theoretical advancements and pragmatic applications across a spectrum of scientific disciplines.展开更多
Antimicrobial resistance (AMR) is a substantial global One Health problem. This paper reports on initial, proof-of-concept development of an agent-based model (ABM) as part of wider modelling efforts to support collab...Antimicrobial resistance (AMR) is a substantial global One Health problem. This paper reports on initial, proof-of-concept development of an agent-based model (ABM) as part of wider modelling efforts to support collaborations between groups interested in policy development for animal health and food systems. The model simulates AMR in poultry production in Senegal. It simultaneously addresses current policy issues, builds on existing modelling in the domain and describes AMR in the broiler chicken production cycle as seen by producers and veterinarians. This enables implementation and assessment of producer antimicrobial use and infection prevention and control strategies in terms of immediate economic incentives, potentially helping to advance conversations by addressing national policy priorities. Our model is presented as a flexible tool with promise for extension as part of AMR policy development in Senegal and West Africa, using participatory approaches. This work indicates that ABM can potentially play a useful role in fostering counter-AMR initiatives driven by food system actor behaviour in lower- and middle-income countries more generally.展开更多
This paper explores the importance of customer-industry engagement (CIE) to peak energy demand by means of a newly developed Bayesian Network (BN) complex systems model entitled the Residential Electricity Peak Demand...This paper explores the importance of customer-industry engagement (CIE) to peak energy demand by means of a newly developed Bayesian Network (BN) complex systems model entitled the Residential Electricity Peak Demand Model (REPDM). The REPDM is based on a multi-disciplinary perspective designed to solve the complex problem of residential peak energy demand. The model provides a way to conceptualise and understand the factors that shift and reduce consumer demand in peak times. To gain insight into the importance of customer-industry engagement in affecting residential peak demand, this research investigates intervention impacts and major influences through testing five scenarios using different levels of customer-industry engagement activities. Scenario testing of the model outlines the dependencies between the customer-industry engagement interventions and the probabilities that are estimated to govern the dependencies that influence peak demand. The output from the model shows that there can be a strong interaction between the level of CIE activities and interventions. The influence of CIE activity can increase public and householder support for peak reduction and the model shows how the economic, technical and social interventions can achieve greater peak demand reductions when well-designed with appropriate levels of CIE activities.展开更多
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
文摘Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathematical modeling approach, agent-based models have an inherent spatial component with which they can easily describe local interactions and environmental heterogeneity. Furthermore, agent-based model maps interactions among agents inherently to the biological phenomenon by embedding the stochastic nature and dynamics transitions, thereby demonstrating suitability for the development of complex biological processes. Recently, an abundance of literature has presented application of agent-based modeling in the biological system. This review focuses on application of agent-based modeling to progression in simulation of infectious disease in the human immune system and discusses advantages and disadvantages of agent-based modeling application. Finally, potential implementation of agent-based modeling in relation to infectious disease modeling in future research is explored.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
文摘The complexity of large-scale network systems made of a large number of nonlinearly interconnected components is a restrictive facet for their modeling and analysis. In this paper, we propose a framework of hierarchical modeling of a complex network system, based on a recursive unsupervised spectral clustering method. The hierarchical model serves the purpose of facilitating the management of complexity in the analysis of real-world critical infrastructures. We exemplify this by referring to the reliability analysis of the 380 kV Italian Power Transmission Network (IPTN). In this work of analysis, the classical component Importance Measures (IMs) of reliability theory have been extended to render them compatible and applicable to a complex distributed network system. By utilizing these extended IMs, the reliability properties of the IPTN system can be evaluated in the framework of the hierarchical system model, with the aim of providing risk managers with information on the risk/safety significance of system structures and components.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
基金sponsored by the Foundation for the Doctoral Program of Ministry of Education of China under Grant No.20060183041the National Natural Science Foundation of China under Grant No. 60773096 and No. 60773098
文摘The biological immune system is a complex adaptive system.There are lots of benefits for building the model of the immune system.For biological researchers,they can test some hypotheses about the infection process or simulate the responses of some drugs.For computer researchers,they can build distributed,robust and fault tolerant networks inspired by the functions of the immune system.This paper provides a comprehensive survey of the literatures on modelling the immune system.From the methodology perspective,the paper compares and analyzes the existing approaches and models,and also demonstrates the focusing research effort on the future immune models in the next few years.
文摘This paper establishes a very important scientific solution to science of complexity for physicists, and presents a multidisciplinary involved physics and engineering. The innovative solution for complex systems presented here is verified on the basis of principles in engineering such as feed-back-system analysis using the classical control theory. This paper proposes that a complex system is a closed-loop system with a negative feedback element and is a solvable problem. A complex system can be analyzed using the system analysis theory in control engineering, and its behavior can be realized using a specially designed simulator.
文摘In an integrated refining and petrochemical complex,a centralized utility system(CUS)is introduced to integrate the steam demands of production plants.Besides,two sub-utility systems(SUSs)located inside the alkene and refinery plants,respectively,can satisfy the shaft demands.It is difficult to determine the steam production of the CUS because the steam demands of the alkene and refinery plants also depend on the design and operation of the SUSs.To explore the complicated interaction between the CUS and SUSs,we proposed a mixed-integer nonlinear programming(MINLP)model for the design and optimization of multiple interconnected utility systems to minimize the total annualized cost(TAC).An extended superstructure was suggested to contain multiple inter-plant connected steam pipe alternatives between the CUS and SUSs.A more accurate model of the complex steam turbine was proposed.Then the proposed MINLP framework is applied to a new integrated refining and petrochemical complex.Two scenarios are investigated in the case study to explore the effect of steam main temperatures on system configurations and operating parameters.By optimizing the main temperatures,a TAC of$2.7 million can be saved.Judging from the results of the two scenarios,the feasibility and effectiveness of the proposed framework for the design and optimization of multiple interconnected utility systems have been demonstrated.
基金National Public Benefit Research Foundation of China (2008416048GYHY201006035)
文摘The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.
文摘Based on the complex network theory,this paper studies the systemic financial risks in China’s financial market.According to the industry classification of the China Securities Regulatory Commission in 2012,the daily closing prices of 45 listed financial institutions are collected and the daily return rates of each financial institution are measured according to the logarithmic return rate calculation formula.In this paper,the risk spillover value ΔCoVaR is used to measure the contribution degree of each financial institution to systemic risk.Finally,the relationship between the risk spillover valueΔCoVaR and the node topology index of the risk transmission network is investigated by using a regression model,and some policy suggestions are put forward based on the regression results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61771299)the Key Laboratory of Speciality Fiber Optics and Optical Access Networks,Shanghai University,China(Grant No.SKLSFO2012-14)+1 种基金Funding of the Key Laboratory of Wireless Sensor Network and Communication,Shanghai Institute of Microsystem and Information Technology,ChinaFunding of the Shanghai Education Committee,Chinese Academy of Sciences,and Shanghai Science Committee(Grant Nos.12511503303,14511105602,and 14511105902)
文摘Synchronization is a phenomenon that is ubiquitous in engineering and natural ecosystems.The study of explosive synchronization on a single-layer network gives the critical transition coupling strength that causes explosive synchronization.However, no significant findings have been made on multi-layer complex networks.This paper proposes a frequency-weighted Kuramoto model on a two-layer network and the critical coupling strength of explosive synchronization is obtained by both theoretical analysis and numerical validation.It is found that the critical value is affected by the interaction strength between layers and the number of network oscillators.The explosive synchronization will be hindered by enhancing the interaction and promoted by increasing the number of network oscillators.Our results have importance across a range of engineering and biological research fields.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
文摘In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in order to describe properly the absence of the corresponding type i of state in the system, i.e. when its “share” Pi =0?. Accordingly, a new equation for partitions P (N, m)? in a set of entities into both empty and nonempty subsets was derived. The indistinguishableness of particles (N identical atoms or molecules) makes only sense within a cluster (subset) with the size?0≤ni ≥N. The first-order phase transition is indeed the case of transitions, for example in the simplest interpretation, from completely liquid state?typeL = {n1 =N, n2 = 0} to the completely crystalline state??typeC= {n1 =0, n2 = N }. These partitions are well distinguished from the physical point of view, so they are ‘typed’ differently in the model. Finally, the present developments in the physics of complex systems, in particular the structural relaxation of super-cooled liquids and glasses, are discussed by using such stochastic cluster-based models.
基金Supported by Lanzhou University key fund project"Modelling Principle and Approaches for Complex Systems
文摘In this paper, by use of equivalence operators δi and semi-equivalence operators Εi we study the clustering problems of complex systems, present δ (1,3) disconnection principle, dual transformation principle and large-scale systems decomposition principle for analizing and operating complex systems, discuss interconnectivity and disconnectivity of complex systems in detail and present some related theorems. Finally, we discuss the levels of systems according to pansystems clustering approach proposed in this paper.
基金supported by the National Key Research and Development Program of China(61873236)the Natural Science Foundation of Zhejiang Province(LZ21F020003,LY18F030001)the Civil Aerospace Pre-research Project(D020101).
文摘A system of systems(SoS)composes a set of independent constituent systems(CSs),where the degree of authority to control the independence of CSs varies,depending on different SoS types.Key researchers describe four SoS types with descending levels of central authority:directed,acknowledged,collaborative and virtual.Although the definitions have been recognized in SoS engineering,what is challenging is the difficulty of translating these definitions into models and simulation environments.Thus,we provide a goal-based method including a mathematical baseline to translate these definitions into more effective agent-based modeling and simulations.First,we construct the theoretical models of CS and SoS.Based on the theoretical models,we analyze the degree of authority influenced by SoS characteristics.Next,we propose a definition of SoS types by quantitatively explaining the degree of authority.Finally,we recognize the differences between acknowledged SoS and collaborative SoS using a migrating waterfowl flock by an agentbased model(ABM)simulation.This paper contributes to the SoS body of knowledge by increasing our understanding of the degree of authority in an SoS,so we may identify suitable SoS types to achieve SoS goals by modeling and simulation.
文摘Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of independent and interrelating agents. Simulations contribute in estimating and comprehending emerging behaviors that require the development of new regulations for local agents that would make improvements to the system. This paper offers an example of a methodology and a process utilized to develop a simulation model named Befergyonet, an ABM used to conduct computer simulations within a spatio-intertemporal environment. The methodology discussed in this paper is intended solely to stimulate the use of innovative computer programs to simulate complex systems as an approach to represent real world events and may be a methodological guide for readers interested in developing their own ABM.
文摘The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-similarity, and the mathematical elegance of the Golden Ratio. This research unravels a unique methodological paradigm, emphasizing the omnipresence of the Golden Ratio in shaping system dynamics. The novelty of this study stems from its detailed exposition of self-similarity and interchangeability, transforming them from mere abstract notions into actionable, concrete insights. By highlighting the fractal nature of the Golden Ratio, the implications of these revelations become far-reaching, heralding new avenues for both theoretical advancements and pragmatic applications across a spectrum of scientific disciplines.
文摘Antimicrobial resistance (AMR) is a substantial global One Health problem. This paper reports on initial, proof-of-concept development of an agent-based model (ABM) as part of wider modelling efforts to support collaborations between groups interested in policy development for animal health and food systems. The model simulates AMR in poultry production in Senegal. It simultaneously addresses current policy issues, builds on existing modelling in the domain and describes AMR in the broiler chicken production cycle as seen by producers and veterinarians. This enables implementation and assessment of producer antimicrobial use and infection prevention and control strategies in terms of immediate economic incentives, potentially helping to advance conversations by addressing national policy priorities. Our model is presented as a flexible tool with promise for extension as part of AMR policy development in Senegal and West Africa, using participatory approaches. This work indicates that ABM can potentially play a useful role in fostering counter-AMR initiatives driven by food system actor behaviour in lower- and middle-income countries more generally.
文摘This paper explores the importance of customer-industry engagement (CIE) to peak energy demand by means of a newly developed Bayesian Network (BN) complex systems model entitled the Residential Electricity Peak Demand Model (REPDM). The REPDM is based on a multi-disciplinary perspective designed to solve the complex problem of residential peak energy demand. The model provides a way to conceptualise and understand the factors that shift and reduce consumer demand in peak times. To gain insight into the importance of customer-industry engagement in affecting residential peak demand, this research investigates intervention impacts and major influences through testing five scenarios using different levels of customer-industry engagement activities. Scenario testing of the model outlines the dependencies between the customer-industry engagement interventions and the probabilities that are estimated to govern the dependencies that influence peak demand. The output from the model shows that there can be a strong interaction between the level of CIE activities and interventions. The influence of CIE activity can increase public and householder support for peak reduction and the model shows how the economic, technical and social interventions can achieve greater peak demand reductions when well-designed with appropriate levels of CIE activities.