Nanoscale medicine confers passive and active targeting potential.The development of nanomedicine is however met with processing,handling and administration hurdles.Excessive solid nanoparticle aggregation and caking ...Nanoscale medicine confers passive and active targeting potential.The development of nanomedicine is however met with processing,handling and administration hurdles.Excessive solid nanoparticle aggregation and caking result in lowproduct yield,poor particle flowability and inefficient drug administration.These are overcome by converting the nanoparticles into a microscale dosage form via agglomeration or compaction techniques.Agglomeration and compaction nonetheless predispose the nanoparticles to risks of losing their nanogeometry,surface composition or chemistry being altered and negating biological performance.This study reviews risk factors faced during agglomeration and compaction that could result in these changes to nanoparticles.The potential risk factors pertain to materials choice in nanoparticle and microscale dosage form development,and their interplay effects with process temperature,physical forces and environmental stresses.To render the physicochemical and biological behaviour of the nanoparticles unaffected by agglomeration or compaction,modes to modulate the interplay effects of material and formulation with processing and environment variables are discussed.展开更多
An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has be...An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.展开更多
The density of black regranulate (BR) of cork and of black agglomerate (BA) and composite agglomerate (CA) prepared fromsuch a waste by different methods was investigated. The preparation of the agglomerates was under...The density of black regranulate (BR) of cork and of black agglomerate (BA) and composite agglomerate (CA) prepared fromsuch a waste by different methods was investigated. The preparation of the agglomerates was undertaken by controlling thespecimen thickness for BA and the particle size for BR and the binder dosage for CA. The mass changes produced in theoven-drying treatment at 376.15 K of the agglomerates and in their subsequent stabilization under ambient conditions werealso analyzed. The density was determined by standard methods. For BR, the bulk density first decreased and then increasedwith decreasing particle size. It was much lower than the apparent density of the agglomeration products of cork. Although toa lesser extent, the density was also lower for BA than for CA. It was higher for the smaller thickness specimens of BA. In thecase of CA, the density followed the same variation trends as for BR. Furthermore it increased significantly with the increasein resin dosage. This resulted in a noticeable increase in the weight loss during the oven-drying and in a significant decreasein the degree of moisture adsorption during the stabilization period of the agglomerate.展开更多
Agglomerates formed in the fluidized bed were studied in this paper using the TEB atomization nozzle. The multi-sieving method was adopted to distinguish the size of original particles, nucleation agglomerates, cohere...Agglomerates formed in the fluidized bed were studied in this paper using the TEB atomization nozzle. The multi-sieving method was adopted to distinguish the size of original particles, nucleation agglomerates, coherence agglomerates, and paste agglomerates in order to successfully identify the different growth stages and select the region for coexistence of most stable heterogeneous agglomerates as the research object. A multi-channel conductance electrical circuit experimental device was developed in this study to measure the conductance signal, which was found to have a liner relationship with the moisture content inside the fluidized bed. By adjusting the sieve mesh openings to achieve the layered isolation of heterogeneous agglomerates, the conductance signal recovered slowly as a result of the agglomerates' fracture during the continuous fluidization process, so that particles and agglomerates moisture distribution measurements could be implemented. The device was used to measure the particles and agglomerates moisture distribution state in the heterogeneous coexistence region, when they were injected with liquid mass within the range of w i=2.8 kg to 4.4 kg. The results indicated that with the increase of liquid mass flow, the moisture content of coherence agglomerates also increased, but the moisture content of nucleation agglomerates was decreased, and that of the original particles was maintained at a relatively low level. When the experimental injection amount reached 4.4 kg, the moisture contained in coherence agglomerates could amount to 87.3%, accounting for a big percentage of moisture in the fluidized bed.展开更多
Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply...Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.展开更多
The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm wa...The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm was achieved. The crushing strength of the agglomerates was determined for good handling of fine (coal-liquid mixture) to improve fugitive dust control, decrease in transportation losses, reduce risk of coal freezing, lower risk of spontaneous combustion, etc. in iron and steel industries, railway corporations and coal corporations. Kerosene (paraffin oil) was used as a binder and the agglomerated coal oil mixture was pelletized using balling technique (disc). Mechanical and physical tests like compressive strength test, etc. were carried out. The relationship between the bridging liquid surface tension and specific surface area on strength factor of coal agglomerates showed that there is considerable variation in these parameters in the coal powder systems.展开更多
The Williamson-Hall and uniaxial compression methods were used to study the variations of the micro-strain and stress-strain relations in WC powders after jet milling and ball milling, respectively. The rupture behavi...The Williamson-Hall and uniaxial compression methods were used to study the variations of the micro-strain and stress-strain relations in WC powders after jet milling and ball milling, respectively. The rupture behavior of agglomerates in WC powders was investigated. Meanwhile, the as-obtained WC powders treated by different milling methods were used to fabricate WC-10%Co cemented carbides, followed by the performance assessment of cemented carbides. The results show that the micro-strain of the jet-milled WC powders decreases significantly compared with that of the ball-milled WC powders, and that the cemented carbides prepared by jet-milled WC powders exhibit excellent properties with a transverse-rupture strength of 4260 MPa, due to the elimination of agglomerates and the reduction of lattice strain.展开更多
In this study, the influence of fluid cracking catalyst(FCC) on the fluidization behavior of ZnO-CuO binary nanoparticles was systematically investigated by varying FCC size. High-speed camera was employed to analyze ...In this study, the influence of fluid cracking catalyst(FCC) on the fluidization behavior of ZnO-CuO binary nanoparticles was systematically investigated by varying FCC size. High-speed camera was employed to analyze the collision and fragmentation process of agglomerates with adding FCC coarse particles. It can be found from photographs by the camera that fluidization performance improved by the agglomerate variation that is bound to be shaped a compact and spherical structure. Furthermore, the result of agglomeration composition analysis showed that uniform mixing of nanoparticles remarkably affected the fluidization behavior of ZnO-CuO binary system. Finally, the improvement of fluidization performance can be justified by the analysis of inter-cohesive force between the two agglomerates with sharp reduction of the newly-formed agglomerates.展开更多
The flow pattern and hydrodynamics of a heterogeneous permeable agglomerate in a uniform upward flow at intermediate Reynolds numbers(1–40)are analyzed from three-dimensional(3 D)computational fluid dynamics simulati...The flow pattern and hydrodynamics of a heterogeneous permeable agglomerate in a uniform upward flow at intermediate Reynolds numbers(1–40)are analyzed from three-dimensional(3 D)computational fluid dynamics simulations.Different from the homogeneous or stepwise-varying permeability models used in previous papers,a continuously radially varying permeability model is used in the present study.The effects of two dimensionless parameters,the Reynolds number and the permeability ratio,on the flow field and the hydrodynamics were investigated in detail.The results reveal that unlike the solid sphere,a small recirculating wake initially forms inside the agglomerate.The critical Reynolds number for the formation of the recirculating wake is lower than that of the solid sphere and it decreases with the increase of permeability ratio.A correlation of drag coefficient as a function of the Reynolds number and permeability ratio is proposed.Comparisons of drag coefficients obtained by different permeability models show that at intermediate Reynolds numbers(1–40),the effect of radially varying permeability on the drag coefficient must be considered.展开更多
The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant fe...The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.展开更多
Based on the theoretical analyses, the adhesion process of fine gold particles to oil-carbon agglomerates in a dynamic system was quantitatively investigated in terms of the relationship between the attachment probabi...Based on the theoretical analyses, the adhesion process of fine gold particles to oil-carbon agglomerates in a dynamic system was quantitatively investigated in terms of the relationship between the attachment probability and the surface energy. The proposed way to establish this relationship is to firstly theoretically derive the formula to (evaluate) the surface energy change of the system by analyzing the adhesion process of a gold particle on an oil-carbon agglomerate in a mathematic and thermodynamic way. The obtained formula of the maximum energy change of unit surface area is, (Δw′max=12σhw(cos θ-1),) which involves two measurable elements: interfacial tension and contact angle. In a well-quantified system, based on the related model it is also possible to calculate the complicated concept, namely, the attachment probability by transferring other measurable indices. In this way, after some adhesion experiments and measurements of relevant parameters, the empirical relationship between the attachment probability and the surface energy change was established in an exponential function, Pa=Aexp(-ΔGsurf/k).展开更多
Spraying parameters during particle agglomeration processes can affect the agglomeration kinetics and particle growth.This study was conducted to better understand the influence of the spraying parameters in a fluidiz...Spraying parameters during particle agglomeration processes can affect the agglomeration kinetics and particle growth.This study was conducted to better understand the influence of the spraying parameters in a fluidized bed wet agglomeration process,and the influence on the stability characteristics of carbon tablets.A formulation based on fine carbon and peroxide powder,as well as carboxymethyl cellulose as a binder,was used to produce agglomerates in a first production step.Thereafter in a second production step carbon tablets with a high porosity were molded for the customer goods industry.The optimization of the compressive strength of these carbon tablets was the goal of the trials.Carbon agglomerates were produced with a laboratory scale granulator called“ProCell”and were compressed with a five-cavity mechanical press.The screening of the agglomeration process parameters and their influence on the agglomerates quality,as well as the performance characteristics of the carbon tablets,were investigated using a multilevel factorial design.The experimental runs were done by varying atomized air pressure and feed rate of the fluid.This was determined by the design model.The findings of the statistical trials showed that low atomized air pressure and a low feed rate lead to a higher tablet compressive strength.展开更多
In this study,boron–magnesium agglomerates with varying mass ratios were prepared by drying a micron-sized boron–magnesium mixed suspension,and the combustion process of these agglomerates under different oxygen-ric...In this study,boron–magnesium agglomerates with varying mass ratios were prepared by drying a micron-sized boron–magnesium mixed suspension,and the combustion process of these agglomerates under different oxygen-rich concentrations were investigated using a laser ignition system.The test results showed that when the mass fraction of magnesium powder in boron-magnesium agglomerates exceeded a certain threshold(between 2%and 5%),flame extinction and reignition occurred after a significant reduction in the agglomerate volume during combustion.This process is referred to as the transient flameout process,which is affected by the magnesium content of the agglomerate and the oxygen concentration in the ambient atmosphere.An increase in the magnesium content or oxygen concentration makes this phenomenon more pronounced.During weakening of the flame intensity,a dark film gradually covered the particle surfaces.X-ray diffraction and elemental analyses of the cross-section and outer surface of the condensed combustion product suggested that the dark film is primarily composed of Mg-B-O ternary oxides.This film prevents direct contact between boron and oxygen,thereby inhibiting surface and gas-phase reactions and leading to the occurrence of the transient flameout phenomenon.展开更多
Iron carbon agglomerates(ICA)are the composite burden for low-carbon blast furnace(BF)ironmaking.In order to optimize the reactivity of ICA according to the evolution characteristics of ICA in the BF smelting process,...Iron carbon agglomerates(ICA)are the composite burden for low-carbon blast furnace(BF)ironmaking.In order to optimize the reactivity of ICA according to the evolution characteristics of ICA in the BF smelting process,the evolution behavior and mechanism of different reactive ICA under simulated BF smelting conditions were studied.The results show that the existence of more sillimanite and aluminosilicate and less active sites of metallic iron will weaken gasification reaction and carburization ability of ICA-1(containing 10%iron ore).It weakens the promoting effect of ICA-1 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron.The aluminosilicate with a high melting point decreases,the low melting point slag phase and Fe–Si alloy increase,and many active sites of metallic iron exist,which strengthen the gasification reaction and carburization ability of ICA-2(containing 30%iron ore).The promoting effect of ICA-2 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron is significantly improved.The gasification reaction capacity of ICA-3(containing 35%iron ore)is reduced,and the improvement in ICA-3 on the softening–melting performance of mixed burdens is reduced.The appropriate proportion of iron ore in ICA is about 30%.展开更多
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
The microstructural changes taking place during heating of calcium orthophosphate (Ca3(PO4)2) agglom- erates were examined in this study. The starting powder was prepared by the spray-pyrolysis of calcium phosphate ...The microstructural changes taking place during heating of calcium orthophosphate (Ca3(PO4)2) agglom- erates were examined in this study. The starting powder was prepared by the spray-pyrolysis of calcium phosphate (Ca/P ratio=1.50) solution containing 1.8 mol·L-1 Ca(NO3)2, 1.2 mol·L-1 (NH4)2HPO4 and concentrated HNO3 at 600 C, using an o air-liquid nozzle. The spray-pyrolyzed powder was found to be composed of dense spherical agglomerates with a mean diameter of 1.3 μm. This powder was further heat-treated at a temperature between 800 and 1400 C for 10 min. When o the spray-pyrolyzed powder was heated up to 900 C, only β-Ca3(PO4)2 was detected, and the mean pore size of the o spherical agglomerates increased via the (i) elimination of residual water and nitrates, (ii) rearrangement of primary par- ticles within the agglomerates, (iii) coalescence of small pores (below 0.1 μm), and (iv) coalescence of agglomerates with diameters below 1 μm into the larger agglomerates. Among the heat-treated powders, pore sizes within the spherical agglomerates were observed to be the largest (mean diameter: 1.8 μm) for the powder heat-treated at 900 C for 10 min. o With an increase in heat-treatment temperature up to 1000 C, the spherical agglomerates were composed of dense o shells. Upon further heating up to 1400 C, the hollow spherical agglomerates collapsed as a result of sintering via the o phase transformation from β- to α-Ca3(PO4)2 (1150 C), thus leading to the formation of a three-dimensional porous net- o work.展开更多
The article presents the results of experimental studies on the gasification of mixtures of brown coal and polyethylene(up to 20 wt%fraction)in a laboratory reactor.The work aims to study the agglomeration process dur...The article presents the results of experimental studies on the gasification of mixtures of brown coal and polyethylene(up to 20 wt%fraction)in a laboratory reactor.The work aims to study the agglomeration process during the heating and oxidation of the mixtures.The measurement results(gas composition,pressure drop)provide indirect information on the dynamics of thermal decomposition and structural changes in the fuel bed.We have shown that the interaction between polyethylene and a coal surface leads to the formation of dense agglomerates,in which the molten polymer acts as a binder.Clinkers form as a result of interfacial interactions between components and filtration flow rearranging.The hydrogen/carbon ratio in the solid residue of coal-polyethylene co-gasification increases from 0.07–0.2 to 1.11,indicating the formation of stable hydrocarbon compounds on the carbon surface.The conducted research makes it possible to identify possible interactions between chemical reactions and transfer processes that lead to agglomeration in mixtures of coal with polyethylene.展开更多
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5...Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.展开更多
Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been...Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.展开更多
Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness m...Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness modulus ratio(FMR) and the percentage loss index(PLI) were proposed. In addition, grey correlation analysis was conducted to discuss the relationship between particle agglomerations and RAP size,asphalt content(AC), and surface area. Two indexes indicate that the agglomeration degree increases in general as the RAP size reduces. This can be attributed to that particles are prone to agglomeration in the case of higher AC. Based on the SEM images and the material composition of RAP, the particle agglomeration in RAP can be classified into weak agglomeration and strong agglomeration. Grey correlation analysis shows that AC is the crucial factor affecting the agglomeration degree and RAP variability. In order to produce consistent and stable reclaimed mixtures, disposal measures of RAP are suggested to lower the AC of RAP.展开更多
文摘Nanoscale medicine confers passive and active targeting potential.The development of nanomedicine is however met with processing,handling and administration hurdles.Excessive solid nanoparticle aggregation and caking result in lowproduct yield,poor particle flowability and inefficient drug administration.These are overcome by converting the nanoparticles into a microscale dosage form via agglomeration or compaction techniques.Agglomeration and compaction nonetheless predispose the nanoparticles to risks of losing their nanogeometry,surface composition or chemistry being altered and negating biological performance.This study reviews risk factors faced during agglomeration and compaction that could result in these changes to nanoparticles.The potential risk factors pertain to materials choice in nanoparticle and microscale dosage form development,and their interplay effects with process temperature,physical forces and environmental stresses.To render the physicochemical and biological behaviour of the nanoparticles unaffected by agglomeration or compaction,modes to modulate the interplay effects of material and formulation with processing and environment variables are discussed.
文摘An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.
文摘The density of black regranulate (BR) of cork and of black agglomerate (BA) and composite agglomerate (CA) prepared fromsuch a waste by different methods was investigated. The preparation of the agglomerates was undertaken by controlling thespecimen thickness for BA and the particle size for BR and the binder dosage for CA. The mass changes produced in theoven-drying treatment at 376.15 K of the agglomerates and in their subsequent stabilization under ambient conditions werealso analyzed. The density was determined by standard methods. For BR, the bulk density first decreased and then increasedwith decreasing particle size. It was much lower than the apparent density of the agglomeration products of cork. Although toa lesser extent, the density was also lower for BA than for CA. It was higher for the smaller thickness specimens of BA. In thecase of CA, the density followed the same variation trends as for BR. Furthermore it increased significantly with the increasein resin dosage. This resulted in a noticeable increase in the weight loss during the oven-drying and in a significant decreasein the degree of moisture adsorption during the stabilization period of the agglomerate.
基金supported by the National Natural Science Foundation of China(No.51276033)
文摘Agglomerates formed in the fluidized bed were studied in this paper using the TEB atomization nozzle. The multi-sieving method was adopted to distinguish the size of original particles, nucleation agglomerates, coherence agglomerates, and paste agglomerates in order to successfully identify the different growth stages and select the region for coexistence of most stable heterogeneous agglomerates as the research object. A multi-channel conductance electrical circuit experimental device was developed in this study to measure the conductance signal, which was found to have a liner relationship with the moisture content inside the fluidized bed. By adjusting the sieve mesh openings to achieve the layered isolation of heterogeneous agglomerates, the conductance signal recovered slowly as a result of the agglomerates' fracture during the continuous fluidization process, so that particles and agglomerates moisture distribution measurements could be implemented. The device was used to measure the particles and agglomerates moisture distribution state in the heterogeneous coexistence region, when they were injected with liquid mass within the range of w i=2.8 kg to 4.4 kg. The results indicated that with the increase of liquid mass flow, the moisture content of coherence agglomerates also increased, but the moisture content of nucleation agglomerates was decreased, and that of the original particles was maintained at a relatively low level. When the experimental injection amount reached 4.4 kg, the moisture contained in coherence agglomerates could amount to 87.3%, accounting for a big percentage of moisture in the fluidized bed.
文摘Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.
文摘The aim of this research is to determine the effect of bridging liquid surface tension and specific surface area on strength factor of coal agglomerates. The production of coal agglomerates of the range 15-27.51 mm was achieved. The crushing strength of the agglomerates was determined for good handling of fine (coal-liquid mixture) to improve fugitive dust control, decrease in transportation losses, reduce risk of coal freezing, lower risk of spontaneous combustion, etc. in iron and steel industries, railway corporations and coal corporations. Kerosene (paraffin oil) was used as a binder and the agglomerated coal oil mixture was pelletized using balling technique (disc). Mechanical and physical tests like compressive strength test, etc. were carried out. The relationship between the bridging liquid surface tension and specific surface area on strength factor of coal agglomerates showed that there is considerable variation in these parameters in the coal powder systems.
基金Project(2016GZ0290) supported by the Key Technology R&D Program of Sichuan Province,ChinaProject(2019CDXYCL0031) supported by the Fundamental Research Funds for the Central Universities,China
文摘The Williamson-Hall and uniaxial compression methods were used to study the variations of the micro-strain and stress-strain relations in WC powders after jet milling and ball milling, respectively. The rupture behavior of agglomerates in WC powders was investigated. Meanwhile, the as-obtained WC powders treated by different milling methods were used to fabricate WC-10%Co cemented carbides, followed by the performance assessment of cemented carbides. The results show that the micro-strain of the jet-milled WC powders decreases significantly compared with that of the ball-milled WC powders, and that the cemented carbides prepared by jet-milled WC powders exhibit excellent properties with a transverse-rupture strength of 4260 MPa, due to the elimination of agglomerates and the reduction of lattice strain.
基金Supported by the National Natural Science Foundation of China(21376269)the Hunan Provincial Science and Technology Plan Project,China(2016TP1007)
文摘In this study, the influence of fluid cracking catalyst(FCC) on the fluidization behavior of ZnO-CuO binary nanoparticles was systematically investigated by varying FCC size. High-speed camera was employed to analyze the collision and fragmentation process of agglomerates with adding FCC coarse particles. It can be found from photographs by the camera that fluidization performance improved by the agglomerate variation that is bound to be shaped a compact and spherical structure. Furthermore, the result of agglomeration composition analysis showed that uniform mixing of nanoparticles remarkably affected the fluidization behavior of ZnO-CuO binary system. Finally, the improvement of fluidization performance can be justified by the analysis of inter-cohesive force between the two agglomerates with sharp reduction of the newly-formed agglomerates.
基金financial support of the Natural Science Foundation of Heilongjiang Province of China(E2018031)。
文摘The flow pattern and hydrodynamics of a heterogeneous permeable agglomerate in a uniform upward flow at intermediate Reynolds numbers(1–40)are analyzed from three-dimensional(3 D)computational fluid dynamics simulations.Different from the homogeneous or stepwise-varying permeability models used in previous papers,a continuously radially varying permeability model is used in the present study.The effects of two dimensionless parameters,the Reynolds number and the permeability ratio,on the flow field and the hydrodynamics were investigated in detail.The results reveal that unlike the solid sphere,a small recirculating wake initially forms inside the agglomerate.The critical Reynolds number for the formation of the recirculating wake is lower than that of the solid sphere and it decreases with the increase of permeability ratio.A correlation of drag coefficient as a function of the Reynolds number and permeability ratio is proposed.Comparisons of drag coefficients obtained by different permeability models show that at intermediate Reynolds numbers(1–40),the effect of radially varying permeability on the drag coefficient must be considered.
基金Supported by TOTAL(DS-2885)the National Natural Science Foundation of China(91434201,21422608)the “Strategic Priority Research Program” of the Chinese Academy of Sciences(XDA07080000)
文摘The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.
文摘Based on the theoretical analyses, the adhesion process of fine gold particles to oil-carbon agglomerates in a dynamic system was quantitatively investigated in terms of the relationship between the attachment probability and the surface energy. The proposed way to establish this relationship is to firstly theoretically derive the formula to (evaluate) the surface energy change of the system by analyzing the adhesion process of a gold particle on an oil-carbon agglomerate in a mathematic and thermodynamic way. The obtained formula of the maximum energy change of unit surface area is, (Δw′max=12σhw(cos θ-1),) which involves two measurable elements: interfacial tension and contact angle. In a well-quantified system, based on the related model it is also possible to calculate the complicated concept, namely, the attachment probability by transferring other measurable indices. In this way, after some adhesion experiments and measurements of relevant parameters, the empirical relationship between the attachment probability and the surface energy change was established in an exponential function, Pa=Aexp(-ΔGsurf/k).
文摘Spraying parameters during particle agglomeration processes can affect the agglomeration kinetics and particle growth.This study was conducted to better understand the influence of the spraying parameters in a fluidized bed wet agglomeration process,and the influence on the stability characteristics of carbon tablets.A formulation based on fine carbon and peroxide powder,as well as carboxymethyl cellulose as a binder,was used to produce agglomerates in a first production step.Thereafter in a second production step carbon tablets with a high porosity were molded for the customer goods industry.The optimization of the compressive strength of these carbon tablets was the goal of the trials.Carbon agglomerates were produced with a laboratory scale granulator called“ProCell”and were compressed with a five-cavity mechanical press.The screening of the agglomeration process parameters and their influence on the agglomerates quality,as well as the performance characteristics of the carbon tablets,were investigated using a multilevel factorial design.The experimental runs were done by varying atomized air pressure and feed rate of the fluid.This was determined by the design model.The findings of the statistical trials showed that low atomized air pressure and a low feed rate lead to a higher tablet compressive strength.
基金financial support provided by the National Natural Science Foundation of China(grant No.52006240)supported by Hunan Provincial Natural Science Foundation of China(grant No.2020JJ4665 and No.2021JJ30775).
文摘In this study,boron–magnesium agglomerates with varying mass ratios were prepared by drying a micron-sized boron–magnesium mixed suspension,and the combustion process of these agglomerates under different oxygen-rich concentrations were investigated using a laser ignition system.The test results showed that when the mass fraction of magnesium powder in boron-magnesium agglomerates exceeded a certain threshold(between 2%and 5%),flame extinction and reignition occurred after a significant reduction in the agglomerate volume during combustion.This process is referred to as the transient flameout process,which is affected by the magnesium content of the agglomerate and the oxygen concentration in the ambient atmosphere.An increase in the magnesium content or oxygen concentration makes this phenomenon more pronounced.During weakening of the flame intensity,a dark film gradually covered the particle surfaces.X-ray diffraction and elemental analyses of the cross-section and outer surface of the condensed combustion product suggested that the dark film is primarily composed of Mg-B-O ternary oxides.This film prevents direct contact between boron and oxygen,thereby inhibiting surface and gas-phase reactions and leading to the occurrence of the transient flameout phenomenon.
基金This work was financially supported by the National Natural Science Foundation of China-Liaoning Joint Funds(U1808212)National Natural Science Foundation of China(52074080)Xingliao Talent Plan(XLYC1902118).
文摘Iron carbon agglomerates(ICA)are the composite burden for low-carbon blast furnace(BF)ironmaking.In order to optimize the reactivity of ICA according to the evolution characteristics of ICA in the BF smelting process,the evolution behavior and mechanism of different reactive ICA under simulated BF smelting conditions were studied.The results show that the existence of more sillimanite and aluminosilicate and less active sites of metallic iron will weaken gasification reaction and carburization ability of ICA-1(containing 10%iron ore).It weakens the promoting effect of ICA-1 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron.The aluminosilicate with a high melting point decreases,the low melting point slag phase and Fe–Si alloy increase,and many active sites of metallic iron exist,which strengthen the gasification reaction and carburization ability of ICA-2(containing 30%iron ore).The promoting effect of ICA-2 on the reduction,softening,and melting of ferrous burdens and the dripping of slag-iron is significantly improved.The gasification reaction capacity of ICA-3(containing 35%iron ore)is reduced,and the improvement in ICA-3 on the softening–melting performance of mixed burdens is reduced.The appropriate proportion of iron ore in ICA is about 30%.
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.
文摘The microstructural changes taking place during heating of calcium orthophosphate (Ca3(PO4)2) agglom- erates were examined in this study. The starting powder was prepared by the spray-pyrolysis of calcium phosphate (Ca/P ratio=1.50) solution containing 1.8 mol·L-1 Ca(NO3)2, 1.2 mol·L-1 (NH4)2HPO4 and concentrated HNO3 at 600 C, using an o air-liquid nozzle. The spray-pyrolyzed powder was found to be composed of dense spherical agglomerates with a mean diameter of 1.3 μm. This powder was further heat-treated at a temperature between 800 and 1400 C for 10 min. When o the spray-pyrolyzed powder was heated up to 900 C, only β-Ca3(PO4)2 was detected, and the mean pore size of the o spherical agglomerates increased via the (i) elimination of residual water and nitrates, (ii) rearrangement of primary par- ticles within the agglomerates, (iii) coalescence of small pores (below 0.1 μm), and (iv) coalescence of agglomerates with diameters below 1 μm into the larger agglomerates. Among the heat-treated powders, pore sizes within the spherical agglomerates were observed to be the largest (mean diameter: 1.8 μm) for the powder heat-treated at 900 C for 10 min. o With an increase in heat-treatment temperature up to 1000 C, the spherical agglomerates were composed of dense o shells. Upon further heating up to 1400 C, the hollow spherical agglomerates collapsed as a result of sintering via the o phase transformation from β- to α-Ca3(PO4)2 (1150 C), thus leading to the formation of a three-dimensional porous net- o work.
文摘The article presents the results of experimental studies on the gasification of mixtures of brown coal and polyethylene(up to 20 wt%fraction)in a laboratory reactor.The work aims to study the agglomeration process during the heating and oxidation of the mixtures.The measurement results(gas composition,pressure drop)provide indirect information on the dynamics of thermal decomposition and structural changes in the fuel bed.We have shown that the interaction between polyethylene and a coal surface leads to the formation of dense agglomerates,in which the molten polymer acts as a binder.Clinkers form as a result of interfacial interactions between components and filtration flow rearranging.The hydrogen/carbon ratio in the solid residue of coal-polyethylene co-gasification increases from 0.07–0.2 to 1.11,indicating the formation of stable hydrocarbon compounds on the carbon surface.The conducted research makes it possible to identify possible interactions between chemical reactions and transfer processes that lead to agglomeration in mixtures of coal with polyethylene.
基金the Swedish Foundation for International Cooperation in Research and Higher Education(STINT,Nos.IB2020-8781 and IB20229228)for the collaboration between KTH<U(Sweden),HYU(Korea),and NEU(China)VINNOVA(No.2022-01216),the SSF Strategic Mobility Grant(No.SM22-0039),the?Forsk(No.23-540),and the Swedish Steel Producers’Association(Jernkontoret),in particular,Axel Ax:-son Johnsons forskningsfond,Prytziska fondennr 2,Gerhard von Hofstens Stiftelse f?r Metallurgisk forskning,and Stiftelsen?veringenj?ren Gustaf Janssons Jernkontorsfond for the financial support.Key Lab of EPM(NEU)is acknowledged for supporting the partial FactSage calculation+2 种基金the Key Laboratory for Ferrous Metallurgy and Resources Utilization of the Min-istry of Education and Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking(No.FMRUlab-22-1)for supporting this researchThe Natural Science Foundation of Liaoning Province,China(No.2023MSBA-135)the Fundamental Research Funds for the Central Universities(No.N2409006)are also acknowledged。
文摘Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.
基金supported by National Natural Science Foundation of China(grant number 42101318)the National Key R&D Program of China(grant number 2018YFD1100101)。
文摘Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.
基金Funded by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No.KYCX21_0496)the Fundamental Research Funds for the Central Universities (for student)+1 种基金the Fundamental Research Funds for the Central Universities (No.B210202050)the Scientific Research Project of Jiangsu Communications Holding Co.,Ltd (No.JETC-DLJS-2022-001)。
文摘Asphalt extraction test and scanning electron microscopy(SEM) were used for analysis of agglomerations of reclaimed asphalt pavement(RAP) particles. In order to quantify the agglomeration degree of RAP, the fineness modulus ratio(FMR) and the percentage loss index(PLI) were proposed. In addition, grey correlation analysis was conducted to discuss the relationship between particle agglomerations and RAP size,asphalt content(AC), and surface area. Two indexes indicate that the agglomeration degree increases in general as the RAP size reduces. This can be attributed to that particles are prone to agglomeration in the case of higher AC. Based on the SEM images and the material composition of RAP, the particle agglomeration in RAP can be classified into weak agglomeration and strong agglomeration. Grey correlation analysis shows that AC is the crucial factor affecting the agglomeration degree and RAP variability. In order to produce consistent and stable reclaimed mixtures, disposal measures of RAP are suggested to lower the AC of RAP.