The aggregation behavior and structure of hydrophobically modified block copolymers of acrylamide and 2-phenoxylethylacrylate were investigated by viscometry, 1H NMR relaxation, 2D NOESY, fluorescence and dynamic ligh...The aggregation behavior and structure of hydrophobically modified block copolymers of acrylamide and 2-phenoxylethylacrylate were investigated by viscometry, 1H NMR relaxation, 2D NOESY, fluorescence and dynamic light scattering. It Was found that the aggregation behavior was strongly dependent on the concentration of polymer solution and the hydrophobe contents. With varying concentration from 2.0, 6.0, 8.0 to 12.0 g/L, there were different aggregate morphologies distributed in aqueous solutions, such as monopolymer chain, micelle-like aggregate, multi-micelle aggregate and cross-linked network. According to the model of aggregation, it can give a reasonable explanation on the large magnitude enhancement of viscosity with the increasing of polymer concentration. Additional data of 2D NOESY and fluorescence show that the copolymer with higher hydrophobe content(molar fraction≥ 1%) is likely to form intra-molecular association.展开更多
A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydr...A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydrophobe were synthesized by radical copolymerization in aqueous solutions without external surfactants. The resulting eopolymers containing a multiblock structure exhibited a high tendency for hydrophobic association and a high thickening capacity. Solution properties and aggregation structures were investigated by viscometry and fluorescence technique. The high viscosity enhancement was found as the polymer concentration beyond a critical value c* and strongly depended on the copolymer microstructures. The number and length of hydrophobic microblocks within the copolymer backbones could be controlled by changing the AEBA concentration in copolymerization system. Addition of salt induced more hydrophobic association and viscosity enhancement. The synthesis method used was simple and environmentally friendly without any external surfactant contamination in comparison with the conventional micellar copolymerization.展开更多
基金Supported by the Youth Research Fund of Beijing Institute of Petrochemical Technology(No.N07-04)
文摘The aggregation behavior and structure of hydrophobically modified block copolymers of acrylamide and 2-phenoxylethylacrylate were investigated by viscometry, 1H NMR relaxation, 2D NOESY, fluorescence and dynamic light scattering. It Was found that the aggregation behavior was strongly dependent on the concentration of polymer solution and the hydrophobe contents. With varying concentration from 2.0, 6.0, 8.0 to 12.0 g/L, there were different aggregate morphologies distributed in aqueous solutions, such as monopolymer chain, micelle-like aggregate, multi-micelle aggregate and cross-linked network. According to the model of aggregation, it can give a reasonable explanation on the large magnitude enhancement of viscosity with the increasing of polymer concentration. Additional data of 2D NOESY and fluorescence show that the copolymer with higher hydrophobe content(molar fraction≥ 1%) is likely to form intra-molecular association.
文摘A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydrophobe were synthesized by radical copolymerization in aqueous solutions without external surfactants. The resulting eopolymers containing a multiblock structure exhibited a high tendency for hydrophobic association and a high thickening capacity. Solution properties and aggregation structures were investigated by viscometry and fluorescence technique. The high viscosity enhancement was found as the polymer concentration beyond a critical value c* and strongly depended on the copolymer microstructures. The number and length of hydrophobic microblocks within the copolymer backbones could be controlled by changing the AEBA concentration in copolymerization system. Addition of salt induced more hydrophobic association and viscosity enhancement. The synthesis method used was simple and environmentally friendly without any external surfactant contamination in comparison with the conventional micellar copolymerization.