期刊文献+
共找到498,112篇文章
< 1 2 250 >
每页显示 20 50 100
Perception of the Mechanization of Rice Cultivation and Its Effects on the Soil in the Senegal River Valley
1
作者 Cheick Atab Mane Siré Diedhiou +2 位作者 Arfang Ousmane Kémo Goudiaby Mohamed Sall Guillaume Gillet 《Agricultural Sciences》 2024年第6期704-718,共15页
In Senegal, particularly in the Senegal River valley, agricultural mechanization remains limited, mainly due to a lack of agricultural equipment, a lack of expertise in agricultural machinery and an apprehension of th... In Senegal, particularly in the Senegal River valley, agricultural mechanization remains limited, mainly due to a lack of agricultural equipment, a lack of expertise in agricultural machinery and an apprehension of the consequences on soil quality. To better understand agricultural mechanization of rice cultivation, this survey study has been carried out in the Senegal river valley. Precisely, this work aimed to characterize farm machinery and its effects on soil and rice cultivation. A questionnaire was administered to 304 out of 1270 farmers, spread over 8 rice-growing areas, 4 of which are located in the Podor department, three in Dagana and one in Saint-Louis. The results showed that 99.3% of farmers used motorized equipment, with 95.7% using tractor and 3.6% a power tiller. Offset tillage, which is a shallow cultivation practice carried out to break up hard soil without turning it over, was most widespread among growers (95.4%). 78.3% of the valley’s farmers felt that the machinery used to carry out tillage operations was inefficient. According to the farmers, the main constraints on the use of agricultural machinery in the valley were: the upkeep and maintenance of equipment (57%), the lack of expertise in mechanization (31%), and issues adapting machinery to local conditions (12%). Those constraints have contributed to a drop in yields in recent years, the spread of weeds on cultivated plots and the gradual degradation of the soil in the area according to 78% of farmers. 展开更多
关键词 Agricultural mechanization Characterization Constraints SOIL RICE
下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
2
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY STRUCTURAL mechanISMS
下载PDF
Sustainable agricultural mechanization in Timor-Leste:status,challenges and further action
3
作者 Jelle Van Loon Mayling Flores Rojas 《Circular Agricultural Systems》 2024年第1期57-66,共10页
Despite many efforts over two decades of independence,Timor-Leste's cereal production and agricultural productivity have decreased dramatically,reflected by high food insecurity and rural poverty.This paper analys... Despite many efforts over two decades of independence,Timor-Leste's cereal production and agricultural productivity have decreased dramatically,reflected by high food insecurity and rural poverty.This paper analyses the country's current agricultural mechanization efforts to guide future actions that aim to stimulate growth through sustainable mechanization.We combined information from scientific publications,governmental and international cooperation communications,and data collected during field missions to assess the situation.Our study provides recommendations to reverse a failed tractorization campaign and presents a comprehensive overview of a strategy,in alignment with a proposed and renewed national agricultural mechanization policy,that would enable the modernization and sustainable intensification of current food production systems in a nutrition-sensitive,climate-smart,economically viable,and gender-inclusive fashion.The recommendations suggest a focus on scale-appropriate solutions that respond to upland smallholder farmers'capacities and consider good rural transport options,with the first steps to redirect the situation already taken through a technical cooperation program between FAO and the Ministry of Agriculture.Beyond this,a reform of the current government mechanization hire schemes is needed:integrated approaches,as found from business model analyses and training exercises during field missions,are needed,that entail context-specific solutions for targeted rural communities,with special attention given to participatory extension,inclusive co-validation of technologies,and private sector-led business model development around mechanization service delivery.Finally,the authors hope the presented way forward can serve as a roadmap for smallholder farmers and developing nations in similar conditions elsewhere in the world. 展开更多
关键词 SUSTAINABLE AGRICULTURAL mechanization
下载PDF
Depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite
4
作者 Feng Zhang Chenyang Zhang +5 位作者 Linlin Wu Wei Sun Hongliang Zhang Jianhua Chen Yong Pei Songjiang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期335-345,共11页
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ... The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite. 展开更多
关键词 SPHALERITE GALENA sulfite ion density functional theory depression mechanism
下载PDF
Efficient chemical mechanical polishing of W promoted by Fenton-like reaction between Cu^(2+)and H_(2)O_(2)
5
作者 Hong-yu CHEN Lin WANG +7 位作者 Feng PENG Meng-meng SHEN Wei HANG Tufa Habtamu BERI Hui-bin ZHANG Jun ZHAO Yun-xiao HAN Bing-hai LÜ 《中国有色金属学报》 北大核心 2025年第1期257-270,共14页
The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate o... The Fenton-like reaction between Cu^(2+)and H_(2)O_(2)was employed in chemical mechanical polishing to achieve efficient and high-quality processing of tungsten.The microstructure evolution and material removal rate of tungsten during polishing process were investigated via scanning electron microscopy,X-ray photoelectron spectroscopy,ultraviolet−visible spectrophotometry,and electrochemical experiments.The passivation behavior and material removal mechanism were discussed.Results show that the use of mixed H_(2)O_(2)+Cu(NO_(3))_(2)oxidant can achieve higher polishing efficiency and surface quality compared with the single oxidant Cu(NO_(3))_(2)or H_(2)O_(2).The increase in material removal rate is attributed to the rapid oxidation of W into WO_(3)via the chemical reaction between the substrate and hydroxyl radicals produced by the Fenton-like reaction.In addition,material removal rate and static etch rate exhibit significantly different dependencies on the concentration of Cu(NO_(3))_(2),while the superior oxidant for achieving the balance between polishing efficiency and surface quality is 0.5 wt.%H_(2)O_(2)+1.0 wt.%Cu(NO_(3))_(2). 展开更多
关键词 chemical mechanical polishing TUNGSTEN Fenton-like reaction hydroxyl radical material removal mechanism
下载PDF
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
6
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
7
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
A novel solution treatment and aging for powder bed fusion-laser beam Ti-6Al-2Sn-4Zr-6Mo alloy:Microstructural and mechanical characterization
8
作者 Gianluca Pirro Alessandra Martucci +2 位作者 Alessandro Morri Mariangela Lombardi Lorella Ceschini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期414-424,共11页
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati... Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms. 展开更多
关键词 powder bed fusion-laser beam titanium alloys heat treatments mechanical properties fractographic analysis
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
9
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
下载PDF
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
10
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
11
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
Processing,microstructure,and mechanical properties of wire arc additively-manufactured AZ91 magnesium alloy using cold arc process
12
作者 Bai-hao CAI Ji-kang FAN +3 位作者 Jie LI Dong-qing YANG Yong PENG Ke-hong WANG 《中国有色金属学报》 北大核心 2025年第1期91-104,共14页
Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties... Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6. 展开更多
关键词 AZ91 magnesium alloy droplet transfer MICROSTRUCTURE mechanical properties cold arc process
下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
13
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
14
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites mechanical properties Thermal properties mechanical stirrer Sonication
下载PDF
Concurrent occurrence of adenocarcinoma and urothelial carcinoma of the prostate:Coexistence mechanisms from multiple perspectives
15
作者 Xu-Chang Liu Yu-Xiang Liu Chun Liu 《World Journal of Clinical Cases》 2025年第12期5-9,共5页
This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers... This article discusses the coexistence of prostate adenocarcinoma and prostate urothelial carcinoma.Combining existing literature and research results,the potential mechanisms of the co-occurrence of these two cancers are explored,including the role of androgen receptor,gene mutations,and their complex interactions in cell signaling pathways,etc.Also,the hypothesis of prostate cancer transformation into urothelial carcinoma is explained from some perspectives,including tumor multipotent stem cell differentiation,epithelial-mesenchymal transition,mesenchymal-epithelial transition,and other mechanisms.Ultimately,the goal is to provide more accurate diagnoses and more personalized treatments in clinical practice,as well as to lay the foundation for improving patient prognoses in the future. 展开更多
关键词 Prostate adenocarcinoma Prostate urothelial carcinoma Coexistence mechanism Transformation mechanism TUMOR
下载PDF
Acupuncture for postoperative ileus:Advancement and underlying mechanisms
16
作者 Yang Ye Xi-Yan Xin +6 位作者 Ze-Jun Huo Yu-Tian Zhu Rui-Wen Fan Hao-Lin Zhang Yu Gao Hong-Bo Shen Dong Li 《World Journal of Gastrointestinal Surgery》 2025年第2期11-15,共5页
Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed v... Postoperative ileus(POI)remains a prevalent and significant challenge following abdominal surgeries,precipitating patient distress,prolonged hospital stays,and escalated medical expenditures.Conventionally addressed via pharmacological interventions,POI is increasingly being explored through adjunctive therapeutic strategies,with acupuncture gaining recognition as a promising option.Acupuncture has demonstrated encouraging potential in promoting gastrointestinal motility in patients with POI.Moreover,recent research has shed light on the therapeutic mechanisms underlying its efficacy.This article aims to present a comprehensive overview of acupuncture as a treatment for POI,highlighting advancements in clinical research and recent elucidations of its mechanistic underpinnings.It aspires to contribute a pivotal reference point for scholars and enthusiasts keen on garnering a deeper understanding of acupuncture’s role in managing POI. 展开更多
关键词 ACUPUNCTURE Gastrointestinal motility mechanISM PATIENTS Postoperative ileus
下载PDF
Research progress on the physiological,biochemical and molecular regulatory mechanisms of fruit tree responses to high-temperature stress
17
作者 Que Wang Yaqiong Wu +2 位作者 Wenlong Wu Lianfei Lyu Weilin Li 《Horticultural Plant Journal》 2025年第1期1-14,共14页
Fruit trees face various adverse environmental factors,such as extreme hydrothermal changes,soil salinization and low precipitation,leading to different types of stress.High temperature is one of the main factors affe... Fruit trees face various adverse environmental factors,such as extreme hydrothermal changes,soil salinization and low precipitation,leading to different types of stress.High temperature is one of the main factors affecting the growth of fruit trees,and an appropriate ambient temperature is a necessary condition for the normal growth and development of fruit trees.Since the 20th century,due to the intensification of the greenhouse effect and global warming,there has been a significant increase in the occurrence and duration of extreme hot weather in summer has been occurring frequently and for longer durations.Thus,the growth and production of fruit trees are affected by severe hightemperature stress.Therefore,this paper primarily summarized the impacts of high-temperature stress on fruit growth and development,flowering,fruiting,fruit setting and quality.It also discussed the physiological and biochemical responses of fruit trees to high-temperature stress,research progress on the molecular mechanisms and signal transduction pathways underlying fruit tree resistance to heat or high temperature,and research on the investigation of relevant metabolites of fruit trees under stress conditions.The future research directions were discussed,and prospects and potential difficulties were proposed to serve a reference for further investigation on the high-temperature tolerance of fruit trees. 展开更多
关键词 Heat shock Heat resistance Regulatory mechanisms MIRNA Fruit crop
下载PDF
Using fracture mechanics method to analyze the failure mechanism and equilibrium equation of interfacial loess-mudstone landslides
18
作者 LI Shuanhu LI Chi GAO Yu 《Journal of Mountain Science》 2025年第1期156-166,共11页
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l... Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research. 展开更多
关键词 Loess-mudstone landslide Failure mechanism Shear fracture energy Equilibrium equation Safety factor
下载PDF
A Generative Adversarial Network with an Attention Spatiotemporal Mechanism for Tropical Cyclone Forecasts
19
作者 Xiaohui LI Xinhai HAN +5 位作者 Jingsong YANG Jiuke WANG Guoqi HAN Jun DING Hui SHEN Jun YAN 《Advances in Atmospheric Sciences》 2025年第1期67-78,共12页
Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose a... Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs. 展开更多
关键词 tropical cyclones spatiotemporal prediction generative adversarial network attention spatiotemporal mechanism deep learning
下载PDF
Effects of increased seeding density on seedling characteristics,mechanical transplantation quality,and yields of rice with crop straw boards for seedling cultivation
20
作者 Yufei Ling Mengzhu Liu +5 位作者 Yuan Feng Zhipeng Xing Hui Gao Haiyan Wei Qun Hu Hongcheng Zhang 《Journal of Integrative Agriculture》 2025年第1期101-113,共13页
The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate dur... The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality. 展开更多
关键词 machine-transplanted rice crop straw board seedling rate seedling quality mechanical transplanta quality yield
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部