In this paper a learning mechanism for reactive fuzzy controller design of a mobile robot navigating in unknown environments is proposed. The fuzzy logical controller is constructed based on the kinematics model of a ...In this paper a learning mechanism for reactive fuzzy controller design of a mobile robot navigating in unknown environments is proposed. The fuzzy logical controller is constructed based on the kinematics model of a real robot. The approach to learning the fuzzy rule base by relatively simple and less computational Q-learning is described in detail. After analyzing the credit assignment problem caused by the rules collision, a remedy is presented. Furthermore, time-varying parameters are used to increase the learning speed. Simulation results prove the mechanism can learn fuzzy navigation rules successfully only using scalar reinforcement signal and the rule base learned is proved to be correct and feasible on real robot platforms.展开更多
文摘In this paper a learning mechanism for reactive fuzzy controller design of a mobile robot navigating in unknown environments is proposed. The fuzzy logical controller is constructed based on the kinematics model of a real robot. The approach to learning the fuzzy rule base by relatively simple and less computational Q-learning is described in detail. After analyzing the credit assignment problem caused by the rules collision, a remedy is presented. Furthermore, time-varying parameters are used to increase the learning speed. Simulation results prove the mechanism can learn fuzzy navigation rules successfully only using scalar reinforcement signal and the rule base learned is proved to be correct and feasible on real robot platforms.