Constructed rhizofiltration is a relatively new technology and has potential in agricultural wastewater treatment. It has been reported to reduce heavy metals in wastewater but no substantive work has been reported ab...Constructed rhizofiltration is a relatively new technology and has potential in agricultural wastewater treatment. It has been reported to reduce heavy metals in wastewater but no substantive work has been reported about its ability to remove nitrogen and phosphorus, particularly in agricultural wastewater. If this technology's worth in nutrient removal from wastewater can be proved, it can save time as well as reducing wastewater treatment cost. Influent and effluent nitrogen and phosphate concentrations in the constructed rhizofiltration were measured and it was found that there was a significant difference between the two water samples (P = 0.01). It was also found that more nitrogen and phosphate were retained by planted region (P = 0.01) compared to unplanted (P = 0.02), demonstrating high removal efficiency in the planted region than in the unplanted region. Eighty six percent (86%) removal efficiency of phosphorus was achieved at some points in the planted region while 71% was achieved for nitrogen. These results indicate that constructed rhizofiltration systems, if properly constructed and planted with macrophytes and maintained, can be used for nitrogen and phosphorus removal in wastewater and thus could be used as an alternative technology for agricultural wastewater treatment.展开更多
文摘Constructed rhizofiltration is a relatively new technology and has potential in agricultural wastewater treatment. It has been reported to reduce heavy metals in wastewater but no substantive work has been reported about its ability to remove nitrogen and phosphorus, particularly in agricultural wastewater. If this technology's worth in nutrient removal from wastewater can be proved, it can save time as well as reducing wastewater treatment cost. Influent and effluent nitrogen and phosphate concentrations in the constructed rhizofiltration were measured and it was found that there was a significant difference between the two water samples (P = 0.01). It was also found that more nitrogen and phosphate were retained by planted region (P = 0.01) compared to unplanted (P = 0.02), demonstrating high removal efficiency in the planted region than in the unplanted region. Eighty six percent (86%) removal efficiency of phosphorus was achieved at some points in the planted region while 71% was achieved for nitrogen. These results indicate that constructed rhizofiltration systems, if properly constructed and planted with macrophytes and maintained, can be used for nitrogen and phosphorus removal in wastewater and thus could be used as an alternative technology for agricultural wastewater treatment.