Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed t...Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed to improve land productivity and control desertification. During this restoration process, soil macro-faunal diversity, and trophic structure were investigated at four types of sites(Farm, Shrub, Tree, and Grass)during growing season in the semi-arid agro-pasture zone of northern China. Results indicated that the Staphylinidae family was found to dominate at the Grass, Shrub, and Tree sites, whiles larval Pyralidae individuals were found at the Grass site only. The density of the omnivores(i.e., Formicidae family) was significantly(P<0.05) greater at the Grass site than at the Tree and Farm sites. The total density and richness of predator and phytophages were found to be markedly(P<0.05) greater at the Grass site than at the Farm site. Meanwhile, we found the taxon richness of predators was significantly(P<0.05) higher at the Shrub site than at the Farm and Tree sites. Compared with the Farm and afforested Shrub/Tree sites,the Grass site had greater density, taxon richness, and Shannon index(P<0.05). In conclusion, natural restoration of abandoned croplands toward grassland was an effective strategy relative to artificial afforestation for improvement of soil biological diversity. Moreover, planting shrub is a preferable measure in abandoned croplands for land development in the semi-arid agro-pasture zone of northern China.展开更多
Long-term field monitoring data and historical crop data are useful to assess the impacts of climate change and to manage cropping systems. The objectives of this study are to understand the cropping system response t...Long-term field monitoring data and historical crop data are useful to assess the impacts of climate change and to manage cropping systems. The objectives of this study are to understand the cropping system response to a warming-drying trend in the northern agro-pastural ecotone (NAE) of China and to document how farmers can adapt to the warming-drying trend by changing cropping system structure and adjusting planting date. The results indicate that a significant warming-drying trend existed in the NAE from 1980 to 2009, and this trend significantly decreased crop (spring wheat, naked oat, and potato) yields. Furthermore, the yield decreased by 16.2%-28.4% with a 1℃ increase in maximum temperature and decreased by 6.6%-11.8% with a 10% decrease in precipitation. Considering food security, water use efficiency, and water ecological adaptability in the semi-arid NAE, cropping system structure adjustment (e.g., a shift from wheat to potato as the predominant crop) and planting date adaptation (e.g., a delay in crop planting date) can offset the impact of the warming-drying trend in the NAE. Based on the successful offsetting of the impact of the warming-drying trend in the NAE, we conclude that farmers can reduce the negative effects of climate change and minimize the risk of crop failure by adapting their cropping system structure at the farming level.展开更多
基金supported by the National Natural Science Foundation of China (41661054 41867005)+4 种基金Project for Top Young Talent Candidates of Ningxia (RQ0010)Science Research Foundation of Ningxia Higher Education (NGY2018007)Ningxia Natural Science Foundation (2018AAC02004)Specialized Foundation for Fundamental Condition Construction in Ningxia Science and Technology (2018DPC05021)the Project of First-Class University of Western China for Key Laboratory of Ningxia University (NXYLXK2017B06, GZXM2017001)
文摘Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed to improve land productivity and control desertification. During this restoration process, soil macro-faunal diversity, and trophic structure were investigated at four types of sites(Farm, Shrub, Tree, and Grass)during growing season in the semi-arid agro-pasture zone of northern China. Results indicated that the Staphylinidae family was found to dominate at the Grass, Shrub, and Tree sites, whiles larval Pyralidae individuals were found at the Grass site only. The density of the omnivores(i.e., Formicidae family) was significantly(P<0.05) greater at the Grass site than at the Tree and Farm sites. The total density and richness of predator and phytophages were found to be markedly(P<0.05) greater at the Grass site than at the Farm site. Meanwhile, we found the taxon richness of predators was significantly(P<0.05) higher at the Shrub site than at the Farm and Tree sites. Compared with the Farm and afforested Shrub/Tree sites,the Grass site had greater density, taxon richness, and Shannon index(P<0.05). In conclusion, natural restoration of abandoned croplands toward grassland was an effective strategy relative to artificial afforestation for improvement of soil biological diversity. Moreover, planting shrub is a preferable measure in abandoned croplands for land development in the semi-arid agro-pasture zone of northern China.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB956204)National Natural Science Foundation of China(41271110 and 41371232)National Science and Technology Support Program of China(2012BAD09B00)
文摘Long-term field monitoring data and historical crop data are useful to assess the impacts of climate change and to manage cropping systems. The objectives of this study are to understand the cropping system response to a warming-drying trend in the northern agro-pastural ecotone (NAE) of China and to document how farmers can adapt to the warming-drying trend by changing cropping system structure and adjusting planting date. The results indicate that a significant warming-drying trend existed in the NAE from 1980 to 2009, and this trend significantly decreased crop (spring wheat, naked oat, and potato) yields. Furthermore, the yield decreased by 16.2%-28.4% with a 1℃ increase in maximum temperature and decreased by 6.6%-11.8% with a 10% decrease in precipitation. Considering food security, water use efficiency, and water ecological adaptability in the semi-arid NAE, cropping system structure adjustment (e.g., a shift from wheat to potato as the predominant crop) and planting date adaptation (e.g., a delay in crop planting date) can offset the impact of the warming-drying trend in the NAE. Based on the successful offsetting of the impact of the warming-drying trend in the NAE, we conclude that farmers can reduce the negative effects of climate change and minimize the risk of crop failure by adapting their cropping system structure at the farming level.