The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ...The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.展开更多
Compared with single agronomic practices management during grain formation, knowledge about integrated agronomic practices management on grain-filling characteristics and physiological function of endogenous hormones ...Compared with single agronomic practices management during grain formation, knowledge about integrated agronomic practices management on grain-filling characteristics and physiological function of endogenous hormones was limited. In order to clarify this issue, two field experiments, integrated agronomic practices management(IAPM), T1(local conventional cultivation practices), T2(an optimized combination of cropping systems and fertilizer treatment), T3(treatment based on high-yield studies), and T4(further optimized combination of cropping systems and fertilizer treatment), and nitrogen rate testing(NAT)(four nitrogen rates, 0, 129.0, 184.5, and 300.0 kg N ha–1) were performed with summer maize hybrid Zhengdan 958(ZD958). Results showed that with increased nitrogen rate, the endogenous hormone balance was promoted and the grain-filling characteristics were improved sufficiently to resulting in a significant increase in grain yield. However, the grain-filling characteristics deteriorated and yield was reduced with excessive nitrogen fertilization. However, IAPM could promote hormone balance and improve grain filling characteristic. The indole-3-acetic acid(IAA), zeatin riboside(ZR), and gibberellin(GA3) contents under T2 and T4 treatments were higher and the abscisic acid(ABA) content was lower, and the ZR and GA3 contents under T3 were higher than those under T1. Those resulted in the maximum grain-filling rate(Wmax) and the active grain-filling period(P) under T2, T3 and T4 were significantly increased than those under T1, and hence promoted kernel weight and grain yield. So IAPM promoted hormone balance by improving tillage model, optimizing fertilizer rate and fertilization period, appropriately increasing planting density and delaying harvest, which promoted grain filling rate and lengthened active grain-filling period, finally increased grain yield.展开更多
The majority of terrestrial plants form some type of mycorrhizal symbiosis.This established symbiosis therefore exists in most commercially important crops, which includes cotton.Arbuscular mycorrhizal fungus(AMF) can...The majority of terrestrial plants form some type of mycorrhizal symbiosis.This established symbiosis therefore exists in most commercially important crops, which includes cotton.Arbuscular mycorrhizal fungus(AMF) can colonise 50%–90% of cotton root length under field and controlled conditions.Mycorrhization improves growth and nutrient uptake(especially phosphorus) of cotton,particularly at the early growth stages.Mycorrhizal symbioses help plants to counter the stresses imposed by physical and chemical soil constraints; however, adverse environmental conditions may restrict the mycorrhizal associations and consequently may reduce nutrient uptake and impair plant growth.In Australia, cotton is mainly grown on sodic soils that contain more than 6% of the total cations as exchangeable sodium.High levels of sodium in the soil create adverse physical and chemical soil conditions that may negatively affect mycorrhizal symbioses of cotton.This review discusses the cotton mycorrhizal colonisation, plant growth, and disease protection effects, potential negative effects of physical and chemical properties of sodic soils, and influences of some agronomic management practices.In addition, the research gaps were identified and some practical applications of the research outcomes were suggested.展开更多
基金support of the National Key R&D Program of China(2023YFD2301500)the China Agriculture System of MOF and MARA(CARS-02)the Shandong Central Guiding the Local Science and Technology Development,China(YDZX20203700002548)。
文摘The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.
基金We are grateful for grants from the National Basic Research Program of China(2015 CB 150404)the earmarked fund for China Agriculture Research System(CARS-02-18)the Funds of Shandong“Double Tops”Program,China(SYL2017YSTD02).
文摘Compared with single agronomic practices management during grain formation, knowledge about integrated agronomic practices management on grain-filling characteristics and physiological function of endogenous hormones was limited. In order to clarify this issue, two field experiments, integrated agronomic practices management(IAPM), T1(local conventional cultivation practices), T2(an optimized combination of cropping systems and fertilizer treatment), T3(treatment based on high-yield studies), and T4(further optimized combination of cropping systems and fertilizer treatment), and nitrogen rate testing(NAT)(four nitrogen rates, 0, 129.0, 184.5, and 300.0 kg N ha–1) were performed with summer maize hybrid Zhengdan 958(ZD958). Results showed that with increased nitrogen rate, the endogenous hormone balance was promoted and the grain-filling characteristics were improved sufficiently to resulting in a significant increase in grain yield. However, the grain-filling characteristics deteriorated and yield was reduced with excessive nitrogen fertilization. However, IAPM could promote hormone balance and improve grain filling characteristic. The indole-3-acetic acid(IAA), zeatin riboside(ZR), and gibberellin(GA3) contents under T2 and T4 treatments were higher and the abscisic acid(ABA) content was lower, and the ZR and GA3 contents under T3 were higher than those under T1. Those resulted in the maximum grain-filling rate(Wmax) and the active grain-filling period(P) under T2, T3 and T4 were significantly increased than those under T1, and hence promoted kernel weight and grain yield. So IAPM promoted hormone balance by improving tillage model, optimizing fertilizer rate and fertilization period, appropriately increasing planting density and delaying harvest, which promoted grain filling rate and lengthened active grain-filling period, finally increased grain yield.
文摘The majority of terrestrial plants form some type of mycorrhizal symbiosis.This established symbiosis therefore exists in most commercially important crops, which includes cotton.Arbuscular mycorrhizal fungus(AMF) can colonise 50%–90% of cotton root length under field and controlled conditions.Mycorrhization improves growth and nutrient uptake(especially phosphorus) of cotton,particularly at the early growth stages.Mycorrhizal symbioses help plants to counter the stresses imposed by physical and chemical soil constraints; however, adverse environmental conditions may restrict the mycorrhizal associations and consequently may reduce nutrient uptake and impair plant growth.In Australia, cotton is mainly grown on sodic soils that contain more than 6% of the total cations as exchangeable sodium.High levels of sodium in the soil create adverse physical and chemical soil conditions that may negatively affect mycorrhizal symbioses of cotton.This review discusses the cotton mycorrhizal colonisation, plant growth, and disease protection effects, potential negative effects of physical and chemical properties of sodic soils, and influences of some agronomic management practices.In addition, the research gaps were identified and some practical applications of the research outcomes were suggested.