Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primar...Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.展开更多
Rapeseed is a very important oil crop in China; however, its production is challenging due to the absence of effective weed management strategies. This is predominantly because of a shortage of herbicide resistance ge...Rapeseed is a very important oil crop in China; however, its production is challenging due to the absence of effective weed management strategies. This is predominantly because of a shortage of herbicide resistance genes. Acetohydroxyacid synthase (AHAS) herbicides inhibit AHAS, a key enzyme involved in branched-chain amino acid synthesis that is required for plant growth. A rapeseed line designated M342 with AHAS herbicide resistance was developed through seed muta- genesis and was studied to assess the level and mode of inheritance of the resistance and to identify the molecular basis of resistance. M342 possessed a high level of cross-resistance to sulfonylureas (SUs) and imidazolinones (IMIs). This resistance was due to AHAS insensitivity to these herbicides and was inherited as a dominant trait conferred by a single nuclear-encoded gene. Molecular analysis revealed the presence of a Trp574Leu mutation in M342, and an allele-specific cleaved amplified polymorphic sequence (AS-CAPS) marker was developed and cosegregated with herbicide resistance in the F2, BC1, and BC2 populations. This mutation altered the transcript levels of BnAHAS1 and BnAHAS3 in M342 compared with those in the wild type, but it did not affect the agronomic or quality traits. The simple genetic inheritance of this mutation and the availability of the cleaved amplified polymorphic sequence (CAPS) marker and herbicide resistance gene should facilitate the development of herbicide-resistant rapeseed cultivars for effective weed control in China.展开更多
Flixweed(Descurainia sophia L.) is a problematic and widespread weed in winter wheat fields and has been controlled by tribenuron-methyl for more than twenty years in China. In this study, a flixweed accession(Hebe...Flixweed(Descurainia sophia L.) is a problematic and widespread weed in winter wheat fields and has been controlled by tribenuron-methyl for more than twenty years in China. In this study, a flixweed accession(Hebei 25, HB25) with an Asp-376-Glu mutation in acetohydroxy acid synthase(AHAS) was identified and purified. The purified HB25 accession(p HB25) developed 758.1-fold resistance to tribenuron-methyl and exhibited obvious cross-resistance to four AHAS-inhibiting herbicides. The resistant/susceptible(R/S) ratios of 50% plant growth reduction(GR_(50)) to herbicides of halosulfuron-methyl, flumetsulam, imazethapyr and pyribenzoxim were 346.1, 15.7, 8.1 and 7.1, respectively. The reduced AHAS sensitivities to four different AHAS-inhibiting herbicides, which were caused by the Asp-376-Glu mutation, were responsible for the resistance and cross-resistance to AHAS-inhibiting herbicides. The R/S ratios of 50% inhibition of AHAS activity(I50) to tribenuron-methyl, halosulfuron-methyl, flumetsulam, imazethapyr and pyribenzoxim were 844.5, 532.9, 74.5, 13.3 and 5.5, respectively. The results of AHAS activity in vitro were highly correlated with that of whole-plant response experiments.展开更多
Based on the crystal structure of AHAS/sulfonylurea complex, we obtained 296 compounds with low binding energy towards AHAS via virtual screening. One series of them have been synthesized. Preliminary bioassay indicat...Based on the crystal structure of AHAS/sulfonylurea complex, we obtained 296 compounds with low binding energy towards AHAS via virtual screening. One series of them have been synthesized. Preliminary bioassay indicated that some compounds displayed good herbicidal activity on rape and bamygrass and inhibited AHAS to some extent. This study indicated the rationality of our molecular design based on the crystal structure of target enzyme.展开更多
基金funded by the National Natural Science Foundation of China(31972281)。
文摘Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.
基金supported by the National Natural Science Foundation of China(31671731)the National Key Research and Development Program of China(2016YFD0101300)+2 种基金the China Agricultural Research System(CARS-13)the Natural Science Foundation of Jiangsu Province,China(BK20151369)the Science Foundation of Jiangsu Academy of Agricultural Sciences,China(6111618)
文摘Rapeseed is a very important oil crop in China; however, its production is challenging due to the absence of effective weed management strategies. This is predominantly because of a shortage of herbicide resistance genes. Acetohydroxyacid synthase (AHAS) herbicides inhibit AHAS, a key enzyme involved in branched-chain amino acid synthesis that is required for plant growth. A rapeseed line designated M342 with AHAS herbicide resistance was developed through seed muta- genesis and was studied to assess the level and mode of inheritance of the resistance and to identify the molecular basis of resistance. M342 possessed a high level of cross-resistance to sulfonylureas (SUs) and imidazolinones (IMIs). This resistance was due to AHAS insensitivity to these herbicides and was inherited as a dominant trait conferred by a single nuclear-encoded gene. Molecular analysis revealed the presence of a Trp574Leu mutation in M342, and an allele-specific cleaved amplified polymorphic sequence (AS-CAPS) marker was developed and cosegregated with herbicide resistance in the F2, BC1, and BC2 populations. This mutation altered the transcript levels of BnAHAS1 and BnAHAS3 in M342 compared with those in the wild type, but it did not affect the agronomic or quality traits. The simple genetic inheritance of this mutation and the availability of the cleaved amplified polymorphic sequence (CAPS) marker and herbicide resistance gene should facilitate the development of herbicide-resistant rapeseed cultivars for effective weed control in China.
基金sponsored by the Special Fund for Agro-scientific Research in the Public Interest,China(201303031)
文摘Flixweed(Descurainia sophia L.) is a problematic and widespread weed in winter wheat fields and has been controlled by tribenuron-methyl for more than twenty years in China. In this study, a flixweed accession(Hebei 25, HB25) with an Asp-376-Glu mutation in acetohydroxy acid synthase(AHAS) was identified and purified. The purified HB25 accession(p HB25) developed 758.1-fold resistance to tribenuron-methyl and exhibited obvious cross-resistance to four AHAS-inhibiting herbicides. The resistant/susceptible(R/S) ratios of 50% plant growth reduction(GR_(50)) to herbicides of halosulfuron-methyl, flumetsulam, imazethapyr and pyribenzoxim were 346.1, 15.7, 8.1 and 7.1, respectively. The reduced AHAS sensitivities to four different AHAS-inhibiting herbicides, which were caused by the Asp-376-Glu mutation, were responsible for the resistance and cross-resistance to AHAS-inhibiting herbicides. The R/S ratios of 50% inhibition of AHAS activity(I50) to tribenuron-methyl, halosulfuron-methyl, flumetsulam, imazethapyr and pyribenzoxim were 844.5, 532.9, 74.5, 13.3 and 5.5, respectively. The results of AHAS activity in vitro were highly correlated with that of whole-plant response experiments.
基金supported by the National Basic Research Program of China(No.2003CB114406)the Natural Science Foundation Program of China(No.20602021)the International Collaborative Key Program of Science and Technology Ministry of China(No.2004DFA01500).
文摘Based on the crystal structure of AHAS/sulfonylurea complex, we obtained 296 compounds with low binding energy towards AHAS via virtual screening. One series of them have been synthesized. Preliminary bioassay indicated that some compounds displayed good herbicidal activity on rape and bamygrass and inhibited AHAS to some extent. This study indicated the rationality of our molecular design based on the crystal structure of target enzyme.