The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion o...The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.展开更多
Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar a...Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar age data from fault gouge samples collected from the Red River Shear Zone at Lao Cai province,Vietnam.The fault gouge samples were separated into three grain-size fractions(〈0.1 μm,0.1-0.4 μm and 0.4-1.0 μm).The results show that the K-Ar age values decrease from coarser to finer grain fractions(24.1 to 19.2 Ma),suggesting enrichment in finer fraction of morerecently grown authigenic illites.The timing of the fault movement are the lower intercept ages at 0%detrital illite(19.2 ± 0.92 Ma and 19.4 ± 0.49 Ma).In combination with previous geochronological data,this result indicates that the metamorphism of the Day Nui Con Voi(DNCV) metamorphic complex took place before ca.26.8 Ma.At about 26.8 Ma-25 Ma,the fault strongly acted to cause the rapid exhumation of the rocks along the Red River-Ailoa Shan Fault Zone(RR-ASFZ).During brittle deformation,the DNCV slowly uplifted,implying weak movement of the fault.This brittle deformation might have lasted for ca.5 Ma.展开更多
The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeomet...The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeometry, kinetics, and seismicity on the land, but according to the contacted relationship between the old pre-Cenozoic block in Indochina Peninsula and the South China block, the Red River Fault Zone was divided into two parts extending from land to ocean, the north and south segments. Since the Tertiary, the Red River Fault Zone suffered first the sinistral movement and then the dextral movement. The activities of the north and the south segments were different. Based on the analysis of earthquakes and focal mechanism solutions,earthquakes with the focus depths of 0-33km are distributed over the whole region and more deep earthquakes are distributed on the northeastern sides of the Red River fault. Types of faulting activities are the thrust in the northwest, the normal in the north and the strike-slip in the south, with the odd type, viz. the transition type, in the other region. These show the Red River Fault Zone and its adjacent region suffered the extruding force in NNW direction and the normal stress in NEE direction and it makes the fault in the region extrude-thrust,horizontal strike-slip and extensional normal movement.展开更多
Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault...Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault zone can be divided into three deformation regions, namely, the north, central and south regions. The north region lies on the eastern side of the Northwest Yunnan extensional taphrogenic belt, which is characterized by the 3 sets of rift-depression basins striking NNW, NNE and near N-S since the Pliocene time, and on its western side is the Lanping-Yunlong compressive deformation belt of the Paleogene to Neogene; the deformation in the central region is characterized by dextral strike-slip or shearing. The east Yunnan Miocene compressive deformation belt lies on the eastern side of the fault in the south, and the Tengtiaohe tensile fault depression belt is located on its west. In terms of tectonic geomorphology, the aforementioned deformation is represented by basin-range tectonics in the north, linear faulted valley-basins in the central part and compressive (or tensional) basins in the south. Among them, the great variance in elevation of the planation surfaces on both sides of the Cangshan-Erhai fault suggests prominent normal faulting along the Red River fault since the Pliocene. From the viewpoint of spatial-temporal evolution, the main active portion of the fault was the southern segment in the Paleogene-Miocene-Pliocene, which is represented by “tearing” from south to north. The main active portion of the fault has migrated to the northern segment since the Pliocene, especially in the late Quaternary, which is characterized by extensional slip from north to southeast. The size of the deformation region and the magnitude of deformation show that the eastern plate of the Red River fault has been an active plate of the relative movement of blocks.展开更多
The Red River Shear Zone (RRSZ), which extends from eastern Tibet to the South China Sea, plays a central role in the hypothesis that strike\|slip extrusion of Indochina accommodated a significant portion of Indo\|Asi...The Red River Shear Zone (RRSZ), which extends from eastern Tibet to the South China Sea, plays a central role in the hypothesis that strike\|slip extrusion of Indochina accommodated a significant portion of Indo\|Asian convergence. The massifs of the RRSZ, the only known mid\|crustal section exposed through a transform plate boundary, contain high\|grade metamorphic rocks that are believed to have been plastically deformed in a left\|lateral sense during the mid\|Tertiary. While the history of diachronous transtension along the RRSZ was previously obtained for temperatures below the brittle\|ductile transition from argon thermochronometry, the precise timing of high temperature deformation and the magnitude of strain have not been directly determined. This is a significant limitation to testing the extrusion model as magnetic anomalies from the South China Sea, interpreted to be a pull apart basin at the SE termination of the RRSZ, specifically predict that slip occurred between 35~17Ma at a rate of 3~5cm/a.展开更多
Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern contin...Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern continental margin of the South China Sea through a travel time tomography technique. The result revealed the apparent tectonic variation along the Ailao Shan-Red River fault zone and its adjacent regions. High velocities are observed in the upper and middle crust beneath the Ailao Shan-Red River fault zone and they reflect the character of the fast uplifting and cooling of the metamorphic belt after the ductile shearing of the fault zone, while low velocities in the lower crust and near the Moho imply a relatively active crust-mantle boundary beneath the fault zone. On the west of the fault zone, the large-scale low velocities in the uppermost mantle beneath western Yunnan prove the influence of the mantle heat flow on volcano, hot spring and magma activities, however, the upper mantle on the east of the fault zone shows a relatively stable structure similar to the Yangtze block. The low velocities of the deep mantle beneath the southeastern extending segment of the fault zone are probably related to the mantle convection produced by the pull-apart of the South China Sea.展开更多
Recent geophysical surveys and basin modeling suggest that the No.1 fault in the Ying- gehai basin (YGHB) is the seaward elongation of the Red River fault zone (RRFZ) in the South China Sea (SCS). The RRFZ, which sepa...Recent geophysical surveys and basin modeling suggest that the No.1 fault in the Ying- gehai basin (YGHB) is the seaward elongation of the Red River fault zone (RRFZ) in the South China Sea (SCS). The RRFZ, which separates the South China and Indochina block, extends first along the Yuedong fault, offshore of Vietnam, and then continues southward and breaks off into two branches: the Lupar fault and the Tinjia fault. The southern extension of the Lupar fault dies out beneath the NW Borneo while the Tinjia fault extends southeast and reaches the Brunei-Sabah area. According to the gravity and geomagnetic data, and the tectonic evolution of the basins, there are different evolution histories between the Wan’an basin (WAB) and the basins in the Nansha block. The Tinjia fault may be the boundary between the Balingian block and the Nansha block. Hence, the line linking the Yue- dong fault and the Tinjia fault, which both are continental margin faults and strike-slip ones in the geological evolution histories, constitute the boundary between the Indochina and Nansha block. The Lupar fault, in contrast, is an intraplate fault within the Indochina block. The results provide new hints for reconstructing the tectonic evolution history of the RRFZ and the opening of the SCS, and also a framework for hydrocarbon prospecting in the region.展开更多
哀牢山—红河断裂带位于青藏高原东南缘,由青藏高原延入南海,是一条分割华南地块与印支地块的构造分界线,在地貌上也是一条醒目的分界线。纵向上由4个北西向的长条状变质带组成(雪龙山、点苍山、哀牢山和Day Nui Con Voi变质带),长约1...哀牢山—红河断裂带位于青藏高原东南缘,由青藏高原延入南海,是一条分割华南地块与印支地块的构造分界线,在地貌上也是一条醒目的分界线。纵向上由4个北西向的长条状变质带组成(雪龙山、点苍山、哀牢山和Day Nui Con Voi变质带),长约1 200 km。横向上分高级变质带和低级变质带,二者之间为倾向北东的哀牢山逆冲断裂带,其中高级变质带主要由元古界高级片麻岩、混合岩.展开更多
通过对东南亚和哀牢山红河构造带演化已有模式的分析,在近年来本区海上研究资料的基础上,结合滇西地质情况,认为东南亚的构造格局是由印度洋、太平洋和欧亚三大构造体系共同作用形成的。60~15 Ma BP,欧亚构造体系分别与太平洋和印度洋...通过对东南亚和哀牢山红河构造带演化已有模式的分析,在近年来本区海上研究资料的基础上,结合滇西地质情况,认为东南亚的构造格局是由印度洋、太平洋和欧亚三大构造体系共同作用形成的。60~15 Ma BP,欧亚构造体系分别与太平洋和印度洋构造体系作用,在东南亚东、西部形成两个弧后盆地扩张体系,两体系扩张强度和方向的不同,形成转换调节构造带——哀牢山红河构造带。东部较强的扩张作用使扬子板块向北运动,形成哀牢山以东的逆冲构造。并导致哀牢山红河构造带的左行走滑。大约15 Ma BP之后,印度洋构造体系作用的加强引发印支板块向东南逃逸,形成挤出模式。构造机制的改变使印支板块以南及以西从张扭变为压扭体制,同时使哀牢山红河构造带经受了两期不同变形机制的左行走滑。展开更多
基金support from the State Key Research"973"Plan of China(No. 2009CB421001)National Natural Science Foundation of China(40872139)+1 种基金the 111 Project(B07011) of the Ministry of Education,State Key Laboratory of Geological Processes and Mineral Resources (GPMR200837)the Fundamental Research Funds for the Central Universities(GPMR2009PY01)
文摘The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.
基金financially supported by the Vietnam National Foundation for Science and Technology Development(NAFOSTED) under grant number 105.032011.11 to Bui Hoang Bac
文摘Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar age data from fault gouge samples collected from the Red River Shear Zone at Lao Cai province,Vietnam.The fault gouge samples were separated into three grain-size fractions(〈0.1 μm,0.1-0.4 μm and 0.4-1.0 μm).The results show that the K-Ar age values decrease from coarser to finer grain fractions(24.1 to 19.2 Ma),suggesting enrichment in finer fraction of morerecently grown authigenic illites.The timing of the fault movement are the lower intercept ages at 0%detrital illite(19.2 ± 0.92 Ma and 19.4 ± 0.49 Ma).In combination with previous geochronological data,this result indicates that the metamorphism of the Day Nui Con Voi(DNCV) metamorphic complex took place before ca.26.8 Ma.At about 26.8 Ma-25 Ma,the fault strongly acted to cause the rapid exhumation of the rocks along the Red River-Ailoa Shan Fault Zone(RR-ASFZ).During brittle deformation,the DNCV slowly uplifted,implying weak movement of the fault.This brittle deformation might have lasted for ca.5 Ma.
基金supported by the Chinese Academy of Sciences(Project No.KZCX2-209-01)National Science Foundation(Project No.40276015)Guangdong Province Science Foundation(Project No.021561).
文摘The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeometry, kinetics, and seismicity on the land, but according to the contacted relationship between the old pre-Cenozoic block in Indochina Peninsula and the South China block, the Red River Fault Zone was divided into two parts extending from land to ocean, the north and south segments. Since the Tertiary, the Red River Fault Zone suffered first the sinistral movement and then the dextral movement. The activities of the north and the south segments were different. Based on the analysis of earthquakes and focal mechanism solutions,earthquakes with the focus depths of 0-33km are distributed over the whole region and more deep earthquakes are distributed on the northeastern sides of the Red River fault. Types of faulting activities are the thrust in the northwest, the normal in the north and the strike-slip in the south, with the odd type, viz. the transition type, in the other region. These show the Red River Fault Zone and its adjacent region suffered the extruding force in NNW direction and the normal stress in NEE direction and it makes the fault in the region extrude-thrust,horizontal strike-slip and extensional normal movement.
文摘Field investigation has revealed that the large-scale dextral strike-slip movement and the associated tectonic deformation along the Red River fault zone have the following features: geometrically, the Red River fault zone can be divided into three deformation regions, namely, the north, central and south regions. The north region lies on the eastern side of the Northwest Yunnan extensional taphrogenic belt, which is characterized by the 3 sets of rift-depression basins striking NNW, NNE and near N-S since the Pliocene time, and on its western side is the Lanping-Yunlong compressive deformation belt of the Paleogene to Neogene; the deformation in the central region is characterized by dextral strike-slip or shearing. The east Yunnan Miocene compressive deformation belt lies on the eastern side of the fault in the south, and the Tengtiaohe tensile fault depression belt is located on its west. In terms of tectonic geomorphology, the aforementioned deformation is represented by basin-range tectonics in the north, linear faulted valley-basins in the central part and compressive (or tensional) basins in the south. Among them, the great variance in elevation of the planation surfaces on both sides of the Cangshan-Erhai fault suggests prominent normal faulting along the Red River fault since the Pliocene. From the viewpoint of spatial-temporal evolution, the main active portion of the fault was the southern segment in the Paleogene-Miocene-Pliocene, which is represented by “tearing” from south to north. The main active portion of the fault has migrated to the northern segment since the Pliocene, especially in the late Quaternary, which is characterized by extensional slip from north to southeast. The size of the deformation region and the magnitude of deformation show that the eastern plate of the Red River fault has been an active plate of the relative movement of blocks.
文摘The Red River Shear Zone (RRSZ), which extends from eastern Tibet to the South China Sea, plays a central role in the hypothesis that strike\|slip extrusion of Indochina accommodated a significant portion of Indo\|Asian convergence. The massifs of the RRSZ, the only known mid\|crustal section exposed through a transform plate boundary, contain high\|grade metamorphic rocks that are believed to have been plastically deformed in a left\|lateral sense during the mid\|Tertiary. While the history of diachronous transtension along the RRSZ was previously obtained for temperatures below the brittle\|ductile transition from argon thermochronometry, the precise timing of high temperature deformation and the magnitude of strain have not been directly determined. This is a significant limitation to testing the extrusion model as magnetic anomalies from the South China Sea, interpreted to be a pull apart basin at the SE termination of the RRSZ, specifically predict that slip occurred between 35~17Ma at a rate of 3~5cm/a.
基金supported by the Chinese Academy of Sciences Grant No.KZCX2-209)the National Major Fundamental and Dev elopment Project(Grant No.G200046701)the National Natural Science Foundation of China(Grant No.40034010).
文摘Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern continental margin of the South China Sea through a travel time tomography technique. The result revealed the apparent tectonic variation along the Ailao Shan-Red River fault zone and its adjacent regions. High velocities are observed in the upper and middle crust beneath the Ailao Shan-Red River fault zone and they reflect the character of the fast uplifting and cooling of the metamorphic belt after the ductile shearing of the fault zone, while low velocities in the lower crust and near the Moho imply a relatively active crust-mantle boundary beneath the fault zone. On the west of the fault zone, the large-scale low velocities in the uppermost mantle beneath western Yunnan prove the influence of the mantle heat flow on volcano, hot spring and magma activities, however, the upper mantle on the east of the fault zone shows a relatively stable structure similar to the Yangtze block. The low velocities of the deep mantle beneath the southeastern extending segment of the fault zone are probably related to the mantle convection produced by the pull-apart of the South China Sea.
基金This work was jointly supported by the Knowledge Innovation Program of the CAS(Grant No.KZCX2-SW-117-03)the Foundation of Key Laboratory of Marginal Sea Geology and Resources of the CAS(Grant No.MSGL04-6)+1 种基金the Program of Guangzhou Institute of Geochemistry of the CAS(Grant No.GIGCX-03-07)the National Natural Science Foundation of China(Grant No.40306010).
文摘Recent geophysical surveys and basin modeling suggest that the No.1 fault in the Ying- gehai basin (YGHB) is the seaward elongation of the Red River fault zone (RRFZ) in the South China Sea (SCS). The RRFZ, which separates the South China and Indochina block, extends first along the Yuedong fault, offshore of Vietnam, and then continues southward and breaks off into two branches: the Lupar fault and the Tinjia fault. The southern extension of the Lupar fault dies out beneath the NW Borneo while the Tinjia fault extends southeast and reaches the Brunei-Sabah area. According to the gravity and geomagnetic data, and the tectonic evolution of the basins, there are different evolution histories between the Wan’an basin (WAB) and the basins in the Nansha block. The Tinjia fault may be the boundary between the Balingian block and the Nansha block. Hence, the line linking the Yue- dong fault and the Tinjia fault, which both are continental margin faults and strike-slip ones in the geological evolution histories, constitute the boundary between the Indochina and Nansha block. The Lupar fault, in contrast, is an intraplate fault within the Indochina block. The results provide new hints for reconstructing the tectonic evolution history of the RRFZ and the opening of the SCS, and also a framework for hydrocarbon prospecting in the region.
文摘通过对东南亚和哀牢山红河构造带演化已有模式的分析,在近年来本区海上研究资料的基础上,结合滇西地质情况,认为东南亚的构造格局是由印度洋、太平洋和欧亚三大构造体系共同作用形成的。60~15 Ma BP,欧亚构造体系分别与太平洋和印度洋构造体系作用,在东南亚东、西部形成两个弧后盆地扩张体系,两体系扩张强度和方向的不同,形成转换调节构造带——哀牢山红河构造带。东部较强的扩张作用使扬子板块向北运动,形成哀牢山以东的逆冲构造。并导致哀牢山红河构造带的左行走滑。大约15 Ma BP之后,印度洋构造体系作用的加强引发印支板块向东南逃逸,形成挤出模式。构造机制的改变使印支板块以南及以西从张扭变为压扭体制,同时使哀牢山红河构造带经受了两期不同变形机制的左行走滑。