The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
This paper will provide a proposed solution for saving energy consumption due to residential air conditioners by reducing the window air conditioners type which is the most consumed energy and has a big percent of spr...This paper will provide a proposed solution for saving energy consumption due to residential air conditioners by reducing the window air conditioners type which is the most consumed energy and has a big percent of spreading inside KSA than the split type, also it will discuss some restrictions for trading and manufacturing of air conditioner devices inside KSA besides some restrictions on market and buildings to achieve the objective of reducing the consumption of energy which become a big trend in kingdom vision 2030. The results of this suggesting solution will help the decision-makers to start its plan for execution as it has a big difference between using window type from 2022 till 2030 and if we stop its sales and replace by an efficient one of split AC type in energy consumption in addition to CO<sub>2</sub> emission reduction and decreasing of energy cost, hence our kingdom can save petroleum raw materials and keeping the environment to become clean from pollutants so that these resources are delivered to successive generations correct and clean as we received them from those before us.展开更多
An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning sy...An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning system,called the ultra-high-temperature instantaneous sterilization air conditioning system(UHTACS),is proposed.Based on the proposed system,a simulation of the UHT-ACS is analysed in various flight states.In the UHT-ACS,the mixing air temperature of return and bleed air can reach temperature up to 148.8°C,which is high enough to kill bacilli and viruses in 2一8 s.The supply air temperature of the UHT-ACS in a mixing cavity is about 12 C in cooling mode both on the ground and in the air.The supply air temperature is about 42 C in heating mode.Compared with the air conditioning systems(ACS)of traditional aircraft the supply air temperatures of the UHT-ACS in the mixing cavity are in good agreement with those of a traditional ACS with 60%fresh air and 40%return air.Furthermore the air temperature at the turbine outlet of the UHT-ACS is higher than that of a traditional ACS which will help to reduce the risk of icing at the outlet.Therefore the UHT-ACS can operate normally in various flight states.展开更多
Energy saving is one of the most important research hotspots, by which operational expenditure and CO2 emission can be reduced. Optimal cooling capacity scheduling in addition to temperature control can improve energy...Energy saving is one of the most important research hotspots, by which operational expenditure and CO2 emission can be reduced. Optimal cooling capacity scheduling in addition to temperature control can improve energy efficiency. The main contribution of this work is modeling the telecommunication building for the fabric cooling load to schedule the operation of air conditioners. The time series data of the fabric cooling load of the building envelope is taken by simulation by using Energy Plus, Building Control Virtual Test Bed (BCVTB), and Matlab. This pre-computed data and other internal thermal loads are used for scheduling in air conditioners. Energy savings obtained for the whole year are about 4% to 6% by simulation and the field study, respectively.展开更多
A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of...A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.展开更多
In order to investigate how the aerodynamic drag and noise produced by the roof air conditioner of a high-speed train can be reduced,the related unsteady flow in the near-field was computed using the method of large e...In order to investigate how the aerodynamic drag and noise produced by the roof air conditioner of a high-speed train can be reduced,the related unsteady flow in the near-field was computed using the method of large eddy simulation.In this way,the aerodynamic source for noise generation has initially been determined.Then,the far-field aerodynamic noise has been computed in the framework of the Lighthill’s acoustics analogy theory.The propulsion height and flow-guide angle of the roof air conditioner were set as the design variables.According to the computational results,a lower propulsion height or flow-guide angle is beneficial in terms of aerodynamic drag and noise mitigation.However,compared to the design scheme with propulsion height of 0mm,the aerodynamic drag coefficient of the configuration with propulsion height of 190mm and flow-guide angle of 30°is slightly larger,while the aerodynamic noise is obviously reduced.Thus,from the viewpoint of the aerodynamic drag and noise,the design scheme with propulsion height of 190 mm and flow-guide angle of 30°is the optimal configuration in the range of conditions examined in the present work.展开更多
In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) ...In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) and heat flow rate Qout which is released into the room as the optimization objectives,we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations.Five numerical cases are presented.Combining the numerical results and theoretical analyses,we can conclude that the optimization applicabilities of the two theories are conditional.If Qout is the optimization objective,larger entransy increase rate always leads to larger Qout,while smaller entropy generation rate does not.If we take COP as the optimization objective,neither the entropy generation minimization nor the concept of entransy increase is always applicable.Furthermore,we find that the concept of entransy dissipation is not applicable for the discussed cases.展开更多
Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study co...Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.展开更多
A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a tradit...A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a traditional fuzzy controller (TFC) and an additional coupling fuzzy controller, the coupling fuzzy controller is introduced to compensate for the unknown cross-coupling effects of this muhivariable system. In order to evaluate the control performance of the MFC, it is digitally implemented in terms of regulating the desired evaporating temperature and superheat. The experimental results show the effectiveness of the MFC for improvement of system performance and energy efficiency.展开更多
Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and opera...Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.展开更多
According to the requirements of welding process for vortex type compressor of air conditioner manufactured in product line, a special girth welding machine with PLC as control core was developed, which had both uprig...According to the requirements of welding process for vortex type compressor of air conditioner manufactured in product line, a special girth welding machine with PLC as control core was developed, which had both upright and 45 ° incline service positions. And some key technologies were researched, such as structural design of machine body, reliable conduction of rotary weldments and quality control of welding process and so on. The experimental results showed that this machine could satisfy the requirements of welding quality and girth welding technology, results also proved the machine was a high-effwiency and low-cost automatic welding device.展开更多
Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeli...Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeling is given for AC energy-saving control and effectiveness optimization is made. To facilitate the implement of the control and energy saving, priorities have been assigned to the major control steps based on logical reasoning. Forward-looking tree modeling based on FDES has been simplified to help further optimization, and a simple and concrete example has been put forward illustrating energy-saving control in AC system.展开更多
Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the ta...Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.展开更多
This paper presents the simulation results of a 9000 BTU/h air conditioner with some selected fluids that have been assessed for their suitability as alternatives to R22 for air conditioners. Only those refrigerants w...This paper presents the simulation results of a 9000 BTU/h air conditioner with some selected fluids that have been assessed for their suitability as alternatives to R22 for air conditioners. Only those refrigerants with zero Ozone Depletion Potential (ODP) are considered. The performances of 11 refrigerants were comparatively studied using the simulation software NIST Cycle_D. R134a, R290, R600, R404A, R407A, R407B, R407C, 407D, R410A, R410B, and R417A are considered in this study. The thermal performances, which are obtained with R 134a and R290, are very close to those of R22. The power consumptions of the unit operating with R404A, R407C, and R410A are higher in the range 22-31% with respect of R22. For the units operating with 407A, R407B, R407D, R407E, and R410B, the electric consumptions are higher in the range 10-23%. For R600, the power consumptions are in the range 6-8%. For all the fluids, the COP is lower by 7-24% than R22, except for R600 for which the COP is higher by 7-9%, and R134a and R290 which exhibit the same COP as R22. When considering the thermal and environmental parameters, R290 is identified as the best candidate for R22, provided the safety aspects of using R290 are addressed.展开更多
It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, t...It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.展开更多
Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/ La0.6Y0.4Ni4.8Mn0.2 was developed working at 393-473 K/293-323 K/263-273 K. Property tests showed that...Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/ La0.6Y0.4Ni4.8Mn0.2 was developed working at 393-473 K/293-323 K/263-273 K. Property tests showed that both alloys have flat plateau slopes and small hystereses; system theoretical coefficient of performance (COP) is 0.711. Based on this work pair, a function proving automobile metal hydride refrigeration system was constructed. The equivalent thermal conductivities of the activated reaction beds were merely 1.1-1.6 W/(m-K), which had not met practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power was 84.6 W at 423 K/303 K/273 K with COP being 0.26. By altering cycling parameters, experiment data showed that cooling power and system COP increase with the growth of heat source temperature as well as pre-heating and regeneration time while decrease with heat sink temperature increment. This study confirms the feasibility of automobile metal hydride refrigeration systems, while heat transfer properties of reaction beds still need to be improved for better performance.展开更多
High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial asp...High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.展开更多
A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to d...A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to discuss the design of fuzzy controller using common microprogrammed control unit (MCU) in detail. Based on fuzzy theory the query control tables fixed in read only memory (ROM) of MCU are established to realize the energy saving in the room temperature controller and the reasoning procedure is analyzed. The diagram of hardware design and the flow chart of software of room temperature controller are presented. The results show that the proposed method is practical and effective to achieve the energy saving goal.展开更多
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
文摘This paper will provide a proposed solution for saving energy consumption due to residential air conditioners by reducing the window air conditioners type which is the most consumed energy and has a big percent of spreading inside KSA than the split type, also it will discuss some restrictions for trading and manufacturing of air conditioner devices inside KSA besides some restrictions on market and buildings to achieve the objective of reducing the consumption of energy which become a big trend in kingdom vision 2030. The results of this suggesting solution will help the decision-makers to start its plan for execution as it has a big difference between using window type from 2022 till 2030 and if we stop its sales and replace by an efficient one of split AC type in energy consumption in addition to CO<sub>2</sub> emission reduction and decreasing of energy cost, hence our kingdom can save petroleum raw materials and keeping the environment to become clean from pollutants so that these resources are delivered to successive generations correct and clean as we received them from those before us.
基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Foundation of Jiangsu Postdoctoral(No.2019K126)。
文摘An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning system,called the ultra-high-temperature instantaneous sterilization air conditioning system(UHTACS),is proposed.Based on the proposed system,a simulation of the UHT-ACS is analysed in various flight states.In the UHT-ACS,the mixing air temperature of return and bleed air can reach temperature up to 148.8°C,which is high enough to kill bacilli and viruses in 2一8 s.The supply air temperature of the UHT-ACS in a mixing cavity is about 12 C in cooling mode both on the ground and in the air.The supply air temperature is about 42 C in heating mode.Compared with the air conditioning systems(ACS)of traditional aircraft the supply air temperatures of the UHT-ACS in the mixing cavity are in good agreement with those of a traditional ACS with 60%fresh air and 40%return air.Furthermore the air temperature at the turbine outlet of the UHT-ACS is higher than that of a traditional ACS which will help to reduce the risk of icing at the outlet.Therefore the UHT-ACS can operate normally in various flight states.
基金support and facilities provieded by Bharat Sanchar Nigam Limited Chennai Telephones and Department of Telecommunications,India for this study
文摘Energy saving is one of the most important research hotspots, by which operational expenditure and CO2 emission can be reduced. Optimal cooling capacity scheduling in addition to temperature control can improve energy efficiency. The main contribution of this work is modeling the telecommunication building for the fabric cooling load to schedule the operation of air conditioners. The time series data of the fabric cooling load of the building envelope is taken by simulation by using Energy Plus, Building Control Virtual Test Bed (BCVTB), and Matlab. This pre-computed data and other internal thermal loads are used for scheduling in air conditioners. Energy savings obtained for the whole year are about 4% to 6% by simulation and the field study, respectively.
文摘A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.
基金supported by the National Key R&D Program of China(No.2016YFB1200504-F)the National Natural Science Foundation of China(No.51705267)+1 种基金the China Postdoctoral Science Foundation(No.2018M630750)the China Railway R&D Program(No.2015J009-D).
文摘In order to investigate how the aerodynamic drag and noise produced by the roof air conditioner of a high-speed train can be reduced,the related unsteady flow in the near-field was computed using the method of large eddy simulation.In this way,the aerodynamic source for noise generation has initially been determined.Then,the far-field aerodynamic noise has been computed in the framework of the Lighthill’s acoustics analogy theory.The propulsion height and flow-guide angle of the roof air conditioner were set as the design variables.According to the computational results,a lower propulsion height or flow-guide angle is beneficial in terms of aerodynamic drag and noise mitigation.However,compared to the design scheme with propulsion height of 0mm,the aerodynamic drag coefficient of the configuration with propulsion height of 190mm and flow-guide angle of 30°is slightly larger,while the aerodynamic noise is obviously reduced.Thus,from the viewpoint of the aerodynamic drag and noise,the design scheme with propulsion height of 190 mm and flow-guide angle of 30°is the optimal configuration in the range of conditions examined in the present work.
基金Project supported by the Youth Programs of Chongqing Three Gorges University,China(Grant No.13QN18)
文摘In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) and heat flow rate Qout which is released into the room as the optimization objectives,we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations.Five numerical cases are presented.Combining the numerical results and theoretical analyses,we can conclude that the optimization applicabilities of the two theories are conditional.If Qout is the optimization objective,larger entransy increase rate always leads to larger Qout,while smaller entropy generation rate does not.If we take COP as the optimization objective,neither the entropy generation minimization nor the concept of entransy increase is always applicable.Furthermore,we find that the concept of entransy dissipation is not applicable for the discussed cases.
基金Research Project of China Ship Development and Design Center。
文摘Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.
基金This work is supported by the National High Technology Research and Development Program of China (863 Programs, GrantNo. 2007AA05Z224)Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KGCX2-YW-345)Zhejiang Scientific and Technological Project(Grant No.2009C3113004)
文摘A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a traditional fuzzy controller (TFC) and an additional coupling fuzzy controller, the coupling fuzzy controller is introduced to compensate for the unknown cross-coupling effects of this muhivariable system. In order to evaluate the control performance of the MFC, it is digitally implemented in terms of regulating the desired evaporating temperature and superheat. The experimental results show the effectiveness of the MFC for improvement of system performance and energy efficiency.
文摘Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.
文摘According to the requirements of welding process for vortex type compressor of air conditioner manufactured in product line, a special girth welding machine with PLC as control core was developed, which had both upright and 45 ° incline service positions. And some key technologies were researched, such as structural design of machine body, reliable conduction of rotary weldments and quality control of welding process and so on. The experimental results showed that this machine could satisfy the requirements of welding quality and girth welding technology, results also proved the machine was a high-effwiency and low-cost automatic welding device.
基金PhD Programs Foundation of Ministry of Education of China( No.20060255006)Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (No.706024)
文摘Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeling is given for AC energy-saving control and effectiveness optimization is made. To facilitate the implement of the control and energy saving, priorities have been assigned to the major control steps based on logical reasoning. Forward-looking tree modeling based on FDES has been simplified to help further optimization, and a simple and concrete example has been put forward illustrating energy-saving control in AC system.
基金Fundamental Research Funds for the Central Universities of Ministry of Education of China。
文摘Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.
文摘This paper presents the simulation results of a 9000 BTU/h air conditioner with some selected fluids that have been assessed for their suitability as alternatives to R22 for air conditioners. Only those refrigerants with zero Ozone Depletion Potential (ODP) are considered. The performances of 11 refrigerants were comparatively studied using the simulation software NIST Cycle_D. R134a, R290, R600, R404A, R407A, R407B, R407C, 407D, R410A, R410B, and R417A are considered in this study. The thermal performances, which are obtained with R 134a and R290, are very close to those of R22. The power consumptions of the unit operating with R404A, R407C, and R410A are higher in the range 22-31% with respect of R22. For the units operating with 407A, R407B, R407D, R407E, and R410B, the electric consumptions are higher in the range 10-23%. For R600, the power consumptions are in the range 6-8%. For all the fluids, the COP is lower by 7-24% than R22, except for R600 for which the COP is higher by 7-9%, and R134a and R290 which exhibit the same COP as R22. When considering the thermal and environmental parameters, R290 is identified as the best candidate for R22, provided the safety aspects of using R290 are addressed.
文摘It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.
基金Project (No. 50276063) supported by the National Natural Science Foundation of China
文摘Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/ La0.6Y0.4Ni4.8Mn0.2 was developed working at 393-473 K/293-323 K/263-273 K. Property tests showed that both alloys have flat plateau slopes and small hystereses; system theoretical coefficient of performance (COP) is 0.711. Based on this work pair, a function proving automobile metal hydride refrigeration system was constructed. The equivalent thermal conductivities of the activated reaction beds were merely 1.1-1.6 W/(m-K), which had not met practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power was 84.6 W at 423 K/303 K/273 K with COP being 0.26. By altering cycling parameters, experiment data showed that cooling power and system COP increase with the growth of heat source temperature as well as pre-heating and regeneration time while decrease with heat sink temperature increment. This study confirms the feasibility of automobile metal hydride refrigeration systems, while heat transfer properties of reaction beds still need to be improved for better performance.
文摘High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.
文摘A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to discuss the design of fuzzy controller using common microprogrammed control unit (MCU) in detail. Based on fuzzy theory the query control tables fixed in read only memory (ROM) of MCU are established to realize the energy saving in the room temperature controller and the reasoning procedure is analyzed. The diagram of hardware design and the flow chart of software of room temperature controller are presented. The results show that the proposed method is practical and effective to achieve the energy saving goal.