Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density ...Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density to assess wind resource.The present study investigates the estimation errors of the potential and fluctuation of wind resource caused by neglecting the spatial-temporal variation features of air density in China.The air density at 100 m height is accurately calculated by using air temperature,pressure,and humidity.The spatial-temporal variation features of air density are firstly analyzed.Then the wind power generation is modeled based on a 1.5 MW wind turbine model by using the actual air density,standard air densityρst,and local annual average air densityρsite,respectively.Usingρstoverestimates the annual wind energy production(AEP)in 93.6%of the study area.Humidity significantly affects AEP in central and southern China areas.In more than 75%of the study area,the winter to summer differences in AEP are underestimated,but the intra-day peak-valley differences and fluctuation rate of wind power are overestimated.Usingρsitesignificantly reduces the estimation error in AEP.But AEP is still overestimated(0-8.6%)in summer and underestimated(0-11.2%)in winter.Except for southwest China,it is hard to reduce the estimation errors of winter to summer differences in AEP by usingρsite.Usingρsitedistinctly reduces the estimation errors of intra-day peak-valley differences and fluctuation rate of wind power,but these estimation errors cannot be ignored as well.The impacts of air density on assessing wind resource are almost independent of the wind turbine types.展开更多
During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and proper...During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased.展开更多
The wood samples of 9 triploid clones of Populus tomentosa Carr. taken from a 9 year old clonal test site were analyzed in order to investigate the genetic variation of wood properties, including air dried wood...The wood samples of 9 triploid clones of Populus tomentosa Carr. taken from a 9 year old clonal test site were analyzed in order to investigate the genetic variation of wood properties, including air dried wood density and some mechanical properties. The results showed that significant or extremely significant difference in air dried wood density and the mechanical properties existed among the clones, this means these wood properties were under moderate or strong genetic controls and could be improved by genetic manipulations. The radial and vertical variation patterns of air dried wood density were also studied and the results were found to coordinate with other previous research results. The vertical variation patterns of most mechanical properties within the individual tree also conformed to the general wood theories except the modulus of elasticity and cross section hardness. Among the mechanical properties, modulus of elasticity (MOE) and tangent section hardness were under strong genetic control, with the clonal repeatabilities being 0 90 and 0 80, respectively. However, the clonal repeatabilities of other mechanical properties under study were a little lower than above two indexes. Genetic correlation analysis indicated that super clonal selection and breeding for veneer timber could be realized through indirect selection of wood density and form indexes.展开更多
The hollow-cup Permanent Magnet(PM) motors have the characteristics of low power consumption, and are widely used in the aerospace field. At present, the tile-shaped PMs used by hollow-cup PM motors have poor sinusoid...The hollow-cup Permanent Magnet(PM) motors have the characteristics of low power consumption, and are widely used in the aerospace field. At present, the tile-shaped PMs used by hollow-cup PM motors have poor sinusoidal characteristics of the air gap magnetic flux density waveform, which will cause torque ripple. The existing method for improving the air gap magnetic flux density waveform is not very effective when applied to hollow cup, a special motor with no stator core and large air gap. A bow-shaped PMs structure is designed for the hollow-cup motor in this paper. First, the equivalent surface current method is used to calculate the analytical formula of the static magnetic field of the model. Then, the Finite Element(FE) method is used to calculate the static air gap flux density waveform of conventional tile-shaped PMs and bow-shaped PMs with different bow heights, and the corresponding harmonics and sine distortion are obtained by Fourier decomposition. The simulation results show that the bow-shaped PMs can effectively improve the sinusoidal characteristics of the static air gap flux density waveform. And the suitable bow height is determined. Finally, a prototype is made based on the suitable bow height for experiments, and compared with the analytical result and the FE result, and the accuracy and effectiveness of the bow-shaped PMs with the suitable bow height are verified.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52107091)the Fundamental Research Funds for the Central Universities(Grant No.2022MS017)the Science and Technology Project of CHINA HUANENG(Offshore wind power and smart energy system,Grant No.HNKJ20-H88)。
文摘Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density to assess wind resource.The present study investigates the estimation errors of the potential and fluctuation of wind resource caused by neglecting the spatial-temporal variation features of air density in China.The air density at 100 m height is accurately calculated by using air temperature,pressure,and humidity.The spatial-temporal variation features of air density are firstly analyzed.Then the wind power generation is modeled based on a 1.5 MW wind turbine model by using the actual air density,standard air densityρst,and local annual average air densityρsite,respectively.Usingρstoverestimates the annual wind energy production(AEP)in 93.6%of the study area.Humidity significantly affects AEP in central and southern China areas.In more than 75%of the study area,the winter to summer differences in AEP are underestimated,but the intra-day peak-valley differences and fluctuation rate of wind power are overestimated.Usingρsitesignificantly reduces the estimation error in AEP.But AEP is still overestimated(0-8.6%)in summer and underestimated(0-11.2%)in winter.Except for southwest China,it is hard to reduce the estimation errors of winter to summer differences in AEP by usingρsite.Usingρsitedistinctly reduces the estimation errors of intra-day peak-valley differences and fluctuation rate of wind power,but these estimation errors cannot be ignored as well.The impacts of air density on assessing wind resource are almost independent of the wind turbine types.
基金We acknowledge the funding support from the National Science Foundation of China(Grant No.52278402)the Young Scientist Project of the National Key Research and Development Program of China(Grant No.2021YFC2900600)the Fundamental Research Funds for the Central Universities of China(Grant No.22120220117).
文摘During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased.
文摘The wood samples of 9 triploid clones of Populus tomentosa Carr. taken from a 9 year old clonal test site were analyzed in order to investigate the genetic variation of wood properties, including air dried wood density and some mechanical properties. The results showed that significant or extremely significant difference in air dried wood density and the mechanical properties existed among the clones, this means these wood properties were under moderate or strong genetic controls and could be improved by genetic manipulations. The radial and vertical variation patterns of air dried wood density were also studied and the results were found to coordinate with other previous research results. The vertical variation patterns of most mechanical properties within the individual tree also conformed to the general wood theories except the modulus of elasticity and cross section hardness. Among the mechanical properties, modulus of elasticity (MOE) and tangent section hardness were under strong genetic control, with the clonal repeatabilities being 0 90 and 0 80, respectively. However, the clonal repeatabilities of other mechanical properties under study were a little lower than above two indexes. Genetic correlation analysis indicated that super clonal selection and breeding for veneer timber could be realized through indirect selection of wood density and form indexes.
基金supported by the National Natural Science Foundation of China(Nos.52075017,62073010)the Excellent Youth Science Foundation of China(No.51722501)。
文摘The hollow-cup Permanent Magnet(PM) motors have the characteristics of low power consumption, and are widely used in the aerospace field. At present, the tile-shaped PMs used by hollow-cup PM motors have poor sinusoidal characteristics of the air gap magnetic flux density waveform, which will cause torque ripple. The existing method for improving the air gap magnetic flux density waveform is not very effective when applied to hollow cup, a special motor with no stator core and large air gap. A bow-shaped PMs structure is designed for the hollow-cup motor in this paper. First, the equivalent surface current method is used to calculate the analytical formula of the static magnetic field of the model. Then, the Finite Element(FE) method is used to calculate the static air gap flux density waveform of conventional tile-shaped PMs and bow-shaped PMs with different bow heights, and the corresponding harmonics and sine distortion are obtained by Fourier decomposition. The simulation results show that the bow-shaped PMs can effectively improve the sinusoidal characteristics of the static air gap flux density waveform. And the suitable bow height is determined. Finally, a prototype is made based on the suitable bow height for experiments, and compared with the analytical result and the FE result, and the accuracy and effectiveness of the bow-shaped PMs with the suitable bow height are verified.