The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and s...The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.展开更多
Polypropylene melt-blown nonwoven was used as the substrate for the preparation of an air film. The nonwoven was immersed in the casting solution at first,and then respectively placed in the first coagulation bath,the...Polypropylene melt-blown nonwoven was used as the substrate for the preparation of an air film. The nonwoven was immersed in the casting solution at first,and then respectively placed in the first coagulation bath,the second coagulation bath and the finishing liquid containing fluorine additive aqueous solution of 20 g/L. At last,the high temperature drying was carried out to obtain the air permeable and water resistant air film. With analyses and comparisons of the isopropanol alcohol content,the residence time of air,the composition of the first coagulation bath and the residence time of the first coagulation,the optimum parameters were found and the air film had an air permeability of 4. 7 L/min,a water blocking pressure of 16 kPa,a contact angle of 134. 2°,and a mean pore size of 2. 089 1 μm.展开更多
Large-span air-conditioning plant rooms have a large roof area and suffer from serious solar radiation in summer. The outside roof surface temperature is very high, so cooling load of roof occupies a large proportion ...Large-span air-conditioning plant rooms have a large roof area and suffer from serious solar radiation in summer. The outside roof surface temperature is very high, so cooling load of roof occupies a large proportion in the envelope structure cooling load of large-span air-conditioning plant rooms. Based on the Coanda airfoil air induction unit, the author combined with exhaust air in large-span air-conditioning plant rooms to design the roof air film cooling system of large-span air-conditioning plant rooms. The adherence air film formed on the outside surface takes away heat on the outside surface of the roof, so as to reduce outside roof surface temperature of the roof, decrease heat transfer temperature difference between inside and outside roof surfaces of, and reduce roof cooling cold. Furthermore, the mathematical model and numerical simulation method of considering fluid-structure interaction for heat transfer and influences of solar radiation on air film formation of outside surface and cooling were constructed. Moreover, the numerical simulation method was conducted the validation of effectiveness. Also, the author discussed the air film formation mechanism and air film cooling ability of outside surface in large-span air-conditioning plant rooms without natural wind, developed a new air film cooling technology for the roof of large-span air-conditioning plant rooms, and supplemented the existing roof cooling technology.展开更多
The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this ...The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically,and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process.The quality factors can be used to characterize the energy dissipation in TM-AFM systems.In this study,the vibration model of the microcantilever beam was established,coupling the vibration and damping effects of the microcantilever beam.The quality factor of the vibrating microcantilever beam under damping was derived,and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated.In addition,the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed.The accuracy of the theoretical simplified model was verified using both experimental and simulation methods.A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode,which was very important for improving both the quality factor and the imaging quality of the TM-AFM system.This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.展开更多
A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimens...A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.展开更多
In this paper, the air film formation behavior of air cushion belt conveyor with stable load is studied. The air cushion field is analyzed by means of theoretical derivation, numerical simulation and experimental rese...In this paper, the air film formation behavior of air cushion belt conveyor with stable load is studied. The air cushion field is analyzed by means of theoretical derivation, numerical simulation and experimental research. An intelligent experiment platform is developed. Three dimensional pressure distribution of air film and the air film thickness distribution along the conveyor belt in the width direction are obtained. The experimental result is analyzed by comparing with theoretical calculation and numerical simulation. The numerical and theoretical results are in good agreement with those obtained from experiments. The air film formation behavior pattern of air cushion belt conveyor with stable load is presented. The optimized film thickness and pore distribution are obtained based on the comprehensive energy consumption. This study provides a basis for the optimization design of air cushion belt conveyor.展开更多
Recently,large and thin glass substrates are transported by air film conveyors to reduce surface damage.On the production line,the glass substrates are desired to be transported flatly on the conveyor to ensure the qu...Recently,large and thin glass substrates are transported by air film conveyors to reduce surface damage.On the production line,the glass substrates are desired to be transported flatly on the conveyor to ensure the quality inspection.A method by feedbacking film pressure to the theoretical model is proposed for estimation of the deformation of the glass sheet,and the validity of the method is theoretically and experimentally verified.First,a theoretical model including the flow behavior through a porous-walled gap is established,and the film pressure distribution can be predicted by solving the model.Then,an experimental setup that can simultaneously measure the film pressure and the flatness of the glass sheet is established,and,the validity of the model is verified experimentally.Next,with the pressure points at the grooves as the boundary and the pressure points at the flange area as the feedback,an algorithm is applied to shape the one-dimensional deformation at the centerlines in accordance with a quadratic curve.Furthermore,two-dimensional deformation of the glass sheet can then be estimated by an interpolation operation.Comparisons of the calculated results with the experimental data verify the effectiveness of the estimating method.展开更多
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2...We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.展开更多
The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to...The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to carburization of the two oxide films were compared using 25Cr20Ni alloy tubes with an inner diameter of 10 mm and a length of 850 mm in a bench scale naphtha steam pyrolysis unit.The oxidation kinetics followed a parabolic law in an air-H2O atmosphere and a logarithm law in a H2-H2O atmosphere in the steady-state stage.The oxide film grown in the air-H2O atmosphere had cracks where the elements Fe and Ni were enriched and the un-cracked area was covered with octahedral-shaped MnCr2O4 spinels and Cr1.3Fe0.7O3 oxide clusters,while the oxide film grown in the H2-H2O atmosphere was intact and completely covered with dense standing blade MnCr2O4 spinels.In the pyrolysis tests,the anti-coking performance and resistance to carburization of the oxide film grown in the H2-H2O atmosphere were far better than that in the air-H2O atmosphere.The mass of coke formed in the oxide film grown in the H2-H2O atmosphere was less than 10% of that in the air-H2O atmosphere.The Cr1.3Fe0.7O3 oxide clusters converted into Cr23C6 carbides and the cracks were filled with carbon in the oxide film grown in the air-H2O atmosphere after repeated coking and decoking tests,while the dense standing blade MnCr2O4 spinels remained unchanged in the oxide film grown in the H2-H2O atmosphere.The ethylene,propylene and butadiene yields in the pyrolysis tests were almost the same for the two oxide films.展开更多
The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy...The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.展开更多
The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its l...The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its large volume and mass. But, many properties of MEMS switch, such as sensitivity, resolution and contact time, are affected by the air damping caused from the squeezed air film between two parallel plates moving relatively. Based on the conservation laws for mass and flux and the nonlinear Reynolds equation, the coefficient of squeeze-film damping was derived. The dynamic responses of the inertial switch with and without squeeze-film damping were simulated by using software ANSYS. The simulated results show that the sensitivity and contact time of the switch descend by about 5% and 15%, respectively, when the effects of squeeze-film damping are considered.展开更多
Based on the energy transfer model(ETM) proposed by Bao et al.and the Monte Carlo(MC) model proposed by Hutcherson and Ye, this paper proposes an efficient molecular model(MC-S) for squeeze-film damping(SQFD) in raref...Based on the energy transfer model(ETM) proposed by Bao et al.and the Monte Carlo(MC) model proposed by Hutcherson and Ye, this paper proposes an efficient molecular model(MC-S) for squeeze-film damping(SQFD) in rarefied air by releasing the assumption of constant molecular velocity in the gap.Compared with the experiment data, the MC-S model is more efficient than the MC model and more accurate than ETM.Besides, by using the MC-S model, the feasibility of the empirical model proposed by Sumali for SQFD of different plate sizes is discussed.It is proved that, for various plate sizes, the accuracy of the empirical model is relatively high.At last, the SQFD of various vibration frequencies is discussed, and it shows that, for low vibration frequency, the MC-S model is reduced to ETM.展开更多
In order to provide theoretical basis and data support for improving the production mode of covering,this study investigated the nighttime air temperature formed by multiple layers of films with tunnel sheds and small...In order to provide theoretical basis and data support for improving the production mode of covering,this study investigated the nighttime air temperature formed by multiple layers of films with tunnel sheds and small tunnel sheds as trial subjects.The experiment was carried out in four tunnel sheds with 0 or 2 small tunnel sheds covered by 0,1,2 and 3 layers of films,respectively in Jinan,Shandong Province in winter of 2018.The nighttime air temperatures of tunnel sheds and small tunnel sheds formed by 1,2,3 and 4 layers of plastic film were measured and analyzed to simulate the temperature environment of early-spring season.The results showed that there were little differences between the nighttime air temperatures inside the tunnel sheds which was installed 0-3-layer small tunnel sheds inside,and there were uncertainty in the values of the air temperatures inside and outside the tunnel sheds;and the nighttime temperature conditions were constantly improved with the number of plastic film layers increasing under the conditions of this study.The analysis indicated that the mechanism of raising the temperature surrounded by plastic film was not only due to its own thermal parameter (thermal conductivity).MATLAB fitting analysis results showed that the increment of nighttime temperature in multi-film coverings became smaller with the number of film layers increasing.In this study,the number of layers in multi-film covering should not exceed 5 layers.展开更多
Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- eri...Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- ering the pressure of sealing air is an important operating condition that affects the oil droplet and oil film mo- tions, the effect of sealing air pressure on airflow in bearing chamber is investigated in this paper firstly ; and then based on the air velocity and air/wall shear force, the oil droplet moving in core air, deposition of oil droplet im- pact on wall as well as velocity and thickness of oil film are analyzed secondly; the effect of sealing air pressure on oil droplet velocity and trajectory, deposition mass and momentum, as well as oil film velocity and thickness is discussed. The work presented in this paper is conducive to expose the oil/air two phase lubrication mechanism and has certain reference value to guide design of secondary air/oil system.展开更多
基金supported by the Key Fundamental Research Program of China (No.2005CB623707)the Project for Talents Cultivation Fund (No.704015)
文摘The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.
文摘Polypropylene melt-blown nonwoven was used as the substrate for the preparation of an air film. The nonwoven was immersed in the casting solution at first,and then respectively placed in the first coagulation bath,the second coagulation bath and the finishing liquid containing fluorine additive aqueous solution of 20 g/L. At last,the high temperature drying was carried out to obtain the air permeable and water resistant air film. With analyses and comparisons of the isopropanol alcohol content,the residence time of air,the composition of the first coagulation bath and the residence time of the first coagulation,the optimum parameters were found and the air film had an air permeability of 4. 7 L/min,a water blocking pressure of 16 kPa,a contact angle of 134. 2°,and a mean pore size of 2. 089 1 μm.
文摘Large-span air-conditioning plant rooms have a large roof area and suffer from serious solar radiation in summer. The outside roof surface temperature is very high, so cooling load of roof occupies a large proportion in the envelope structure cooling load of large-span air-conditioning plant rooms. Based on the Coanda airfoil air induction unit, the author combined with exhaust air in large-span air-conditioning plant rooms to design the roof air film cooling system of large-span air-conditioning plant rooms. The adherence air film formed on the outside surface takes away heat on the outside surface of the roof, so as to reduce outside roof surface temperature of the roof, decrease heat transfer temperature difference between inside and outside roof surfaces of, and reduce roof cooling cold. Furthermore, the mathematical model and numerical simulation method of considering fluid-structure interaction for heat transfer and influences of solar radiation on air film formation of outside surface and cooling were constructed. Moreover, the numerical simulation method was conducted the validation of effectiveness. Also, the author discussed the air film formation mechanism and air film cooling ability of outside surface in large-span air-conditioning plant rooms without natural wind, developed a new air film cooling technology for the roof of large-span air-conditioning plant rooms, and supplemented the existing roof cooling technology.
基金the National Natural Science Foun-dation of China(Grant No.11572031).
文摘The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically,and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process.The quality factors can be used to characterize the energy dissipation in TM-AFM systems.In this study,the vibration model of the microcantilever beam was established,coupling the vibration and damping effects of the microcantilever beam.The quality factor of the vibrating microcantilever beam under damping was derived,and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated.In addition,the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed.The accuracy of the theoretical simplified model was verified using both experimental and simulation methods.A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode,which was very important for improving both the quality factor and the imaging quality of the TM-AFM system.This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.
文摘A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 51075025 and 51175029)the Beijing Natural Science Foundation (Grant No. 3123041)
文摘In this paper, the air film formation behavior of air cushion belt conveyor with stable load is studied. The air cushion field is analyzed by means of theoretical derivation, numerical simulation and experimental research. An intelligent experiment platform is developed. Three dimensional pressure distribution of air film and the air film thickness distribution along the conveyor belt in the width direction are obtained. The experimental result is analyzed by comparing with theoretical calculation and numerical simulation. The numerical and theoretical results are in good agreement with those obtained from experiments. The air film formation behavior pattern of air cushion belt conveyor with stable load is presented. The optimized film thickness and pore distribution are obtained based on the comprehensive energy consumption. This study provides a basis for the optimization design of air cushion belt conveyor.
基金This study was supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20181467)the National Natural Science Foundation of China(Grant No.51675247).
文摘Recently,large and thin glass substrates are transported by air film conveyors to reduce surface damage.On the production line,the glass substrates are desired to be transported flatly on the conveyor to ensure the quality inspection.A method by feedbacking film pressure to the theoretical model is proposed for estimation of the deformation of the glass sheet,and the validity of the method is theoretically and experimentally verified.First,a theoretical model including the flow behavior through a porous-walled gap is established,and the film pressure distribution can be predicted by solving the model.Then,an experimental setup that can simultaneously measure the film pressure and the flatness of the glass sheet is established,and,the validity of the model is verified experimentally.Next,with the pressure points at the grooves as the boundary and the pressure points at the flange area as the feedback,an algorithm is applied to shape the one-dimensional deformation at the centerlines in accordance with a quadratic curve.Furthermore,two-dimensional deformation of the glass sheet can then be estimated by an interpolation operation.Comparisons of the calculated results with the experimental data verify the effectiveness of the estimating method.
基金Supported by the National Natural Science Foundation of China under Grant No 11704161the Natural Science Foundation of Jiangsu Province under Grant Nos BK20170309 and BK20151172the Changzhou Science and Technology Bureau under Grant Nos CJ20159049 and CJ20160028
文摘We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.
基金financially supported by the scientific research project of China Petroleum and Chemical Corporation(No.409075)
文摘The oxidation kinetics,surface morphology and phase structure of oxide films grown on 25Cr20Ni alloy in air-H2O and H2-H2O atmospheres at 900 ℃ for 20 h were investigated.The anti-coking performance and resistance to carburization of the two oxide films were compared using 25Cr20Ni alloy tubes with an inner diameter of 10 mm and a length of 850 mm in a bench scale naphtha steam pyrolysis unit.The oxidation kinetics followed a parabolic law in an air-H2O atmosphere and a logarithm law in a H2-H2O atmosphere in the steady-state stage.The oxide film grown in the air-H2O atmosphere had cracks where the elements Fe and Ni were enriched and the un-cracked area was covered with octahedral-shaped MnCr2O4 spinels and Cr1.3Fe0.7O3 oxide clusters,while the oxide film grown in the H2-H2O atmosphere was intact and completely covered with dense standing blade MnCr2O4 spinels.In the pyrolysis tests,the anti-coking performance and resistance to carburization of the oxide film grown in the H2-H2O atmosphere were far better than that in the air-H2O atmosphere.The mass of coke formed in the oxide film grown in the H2-H2O atmosphere was less than 10% of that in the air-H2O atmosphere.The Cr1.3Fe0.7O3 oxide clusters converted into Cr23C6 carbides and the cracks were filled with carbon in the oxide film grown in the air-H2O atmosphere after repeated coking and decoking tests,while the dense standing blade MnCr2O4 spinels remained unchanged in the oxide film grown in the H2-H2O atmosphere.The ethylene,propylene and butadiene yields in the pyrolysis tests were almost the same for the two oxide films.
基金Funded by the National Natural Science Foundation of China (50672089)the Encouraging Foundation for the Scientific Research of the Excellent Young and Middleaged Scientists in Shandong Province(2006BS04034)
文摘The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.
文摘The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its large volume and mass. But, many properties of MEMS switch, such as sensitivity, resolution and contact time, are affected by the air damping caused from the squeezed air film between two parallel plates moving relatively. Based on the conservation laws for mass and flux and the nonlinear Reynolds equation, the coefficient of squeeze-film damping was derived. The dynamic responses of the inertial switch with and without squeeze-film damping were simulated by using software ANSYS. The simulated results show that the sensitivity and contact time of the switch descend by about 5% and 15%, respectively, when the effects of squeeze-film damping are considered.
基金Project supported by the National Natural Science Foundation of China(Grant No.51375091)
文摘Based on the energy transfer model(ETM) proposed by Bao et al.and the Monte Carlo(MC) model proposed by Hutcherson and Ye, this paper proposes an efficient molecular model(MC-S) for squeeze-film damping(SQFD) in rarefied air by releasing the assumption of constant molecular velocity in the gap.Compared with the experiment data, the MC-S model is more efficient than the MC model and more accurate than ETM.Besides, by using the MC-S model, the feasibility of the empirical model proposed by Sumali for SQFD of different plate sizes is discussed.It is proved that, for various plate sizes, the accuracy of the empirical model is relatively high.At last, the SQFD of various vibration frequencies is discussed, and it shows that, for low vibration frequency, the MC-S model is reduced to ETM.
基金Supported by Weifang Comprehensive Experimental Station Project of National Watermelon and Melon Industrial Technology System(CARS-25)Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018D05)
文摘In order to provide theoretical basis and data support for improving the production mode of covering,this study investigated the nighttime air temperature formed by multiple layers of films with tunnel sheds and small tunnel sheds as trial subjects.The experiment was carried out in four tunnel sheds with 0 or 2 small tunnel sheds covered by 0,1,2 and 3 layers of films,respectively in Jinan,Shandong Province in winter of 2018.The nighttime air temperatures of tunnel sheds and small tunnel sheds formed by 1,2,3 and 4 layers of plastic film were measured and analyzed to simulate the temperature environment of early-spring season.The results showed that there were little differences between the nighttime air temperatures inside the tunnel sheds which was installed 0-3-layer small tunnel sheds inside,and there were uncertainty in the values of the air temperatures inside and outside the tunnel sheds;and the nighttime temperature conditions were constantly improved with the number of plastic film layers increasing under the conditions of this study.The analysis indicated that the mechanism of raising the temperature surrounded by plastic film was not only due to its own thermal parameter (thermal conductivity).MATLAB fitting analysis results showed that the increment of nighttime temperature in multi-film coverings became smaller with the number of film layers increasing.In this study,the number of layers in multi-film covering should not exceed 5 layers.
基金supported by the Natural Science Foundation of China under Grant No.51275411
文摘Beating chamber is one of important components that support aero-engine rotors and research on oil droplet and oil film motions is an important part of bearing chamber lubrication and heat transfer design. Consid- ering the pressure of sealing air is an important operating condition that affects the oil droplet and oil film mo- tions, the effect of sealing air pressure on airflow in bearing chamber is investigated in this paper firstly ; and then based on the air velocity and air/wall shear force, the oil droplet moving in core air, deposition of oil droplet im- pact on wall as well as velocity and thickness of oil film are analyzed secondly; the effect of sealing air pressure on oil droplet velocity and trajectory, deposition mass and momentum, as well as oil film velocity and thickness is discussed. The work presented in this paper is conducive to expose the oil/air two phase lubrication mechanism and has certain reference value to guide design of secondary air/oil system.