This paper described the researches carried out on the characteristics and control of a low pressure pneumatic system to actuate a three degree of freedom (3 DOF) robot. The motors used are the low pressure rota...This paper described the researches carried out on the characteristics and control of a low pressure pneumatic system to actuate a three degree of freedom (3 DOF) robot. The motors used are the low pressure rotary type air motors equipped with two valves to adjust the motor speed and its direction. The 3 DOF model was used to perform the test of path control under different amounts of payload. A control algorithm based on the PID feedback control was developed for the robot.展开更多
Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its ea...Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is pro- posed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are syn- thesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air- gap eccentricity diagnosis. The effectiveness of the pro- posed harmonic synthesis technique is examined experi- mentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.展开更多
Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearin...Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearing on the stator, and is driven by on-board two large linear motors in a cross-configuration. Firstly, a model of the PLSLM is established by finite element method (FEM). Secondly, based on the model, the natural frequencies and model shapes are discusse& And the contribution of each active mode is evaluated by computing the modal participation factors (MPF), which indicates the major vibration direction. Furthermore, by the experimental modal analysis, the experimental results are in agreement with simulation results, which it is sure that the FEM is reasonable. What's more, comparing with the effects on the frequency due to the air-bearing stiffness, the relations of the natural frequencies with the air-bearing stiffness are found. It is found that the frequency response curve is fluctuant with the air-bearing stiffness in each direction. Finally, it is conclusion that the natural frequency of the PLSLM is largely affected by the air-bearing stiffness variety. This research is contributed to the dynamic characteristics resulted from the air-beating stiffness. Further work will include better optimization on the dynamic parameter in the controller design through the control algorithm for the precise long stroke motor.展开更多
Axial flux hysteresis motor (AFHM) is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials. It is known that the magnetic characteristics of hysteresis motor could be easily a...Axial flux hysteresis motor (AFHM) is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials. It is known that the magnetic characteristics of hysteresis motor could be easily affected by air gap and structure dimensions variation. Air gap length plays an important role in flux distribution in hysteresis ring and influences the output torque, terminal current, efficiency and even optimal value of other structural parameters of AFHM. Regarding this issue, in this study effect of air gap variation on performance characteristics of an axial flux hysteresis motor and effect of air gap length on hysteresis ring thickness and stator winding turns is investigated. Effect of air gap length on electrical circuit model is perused. Finally, simulation of AFHM in order to extract the output values of motor and sensitivity analysis on air gap variation is done using 3D-Finite Element Model. Hysteresis loop in the shape of an inclined ellipse is adopted. This study can help designers in design approach of such motors.展开更多
针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速...针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速侧两个调磁环对DAMGM低速转子进行调制,且两个调磁环中的非导磁部分均为永磁体,有效提高了低速转子的输出转矩;另外,与现有AMGM相比,将驱动电动机置于DAMGM高速永磁转子内部,减小了整体轴向尺寸,大幅提高了低速转子的转矩密度(150 kN·m/m^(3))。针对现有3D有限元计算时间长、计算机资源浪费严重等问题,给出一种基于圆柱坐标系的DAMGM三维分析方法。根据调磁环的3种边界条件,建立了调制后DAMGM气隙磁场及电磁转矩的数理模型,不仅计算结果准确(与3D有限元相比,平均计算误差≤5%),而且计算时间短(仅为3D有限元的1/10),便于DAMGM不同参数结构的分析、比较与优化。展开更多
文摘This paper described the researches carried out on the characteristics and control of a low pressure pneumatic system to actuate a three degree of freedom (3 DOF) robot. The motors used are the low pressure rotary type air motors equipped with two valves to adjust the motor speed and its direction. The 3 DOF model was used to perform the test of path control under different amounts of payload. A control algorithm based on the PID feedback control was developed for the robot.
基金Supported in part by Natural Sciences and Engineering Research Council of Canada(NSERC)eMech Systems IncBare Point Water Treatment Plant in Thunder Bay,Ontario,Canada
文摘Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is pro- posed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are syn- thesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air- gap eccentricity diagnosis. The effectiveness of the pro- posed harmonic synthesis technique is examined experi- mentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
基金National Basic Research Program of China (973 Program,No.2003CB716206)National Natural Science Foundation of China (No.50605025)
文摘Dynamic characteristic is presented by identifying the model and the dynamic parameters of a precise long stroke linear motor (PLSLM) with the air-bearing in optical lithography. The PLSLM is supported by air-bearing on the stator, and is driven by on-board two large linear motors in a cross-configuration. Firstly, a model of the PLSLM is established by finite element method (FEM). Secondly, based on the model, the natural frequencies and model shapes are discusse& And the contribution of each active mode is evaluated by computing the modal participation factors (MPF), which indicates the major vibration direction. Furthermore, by the experimental modal analysis, the experimental results are in agreement with simulation results, which it is sure that the FEM is reasonable. What's more, comparing with the effects on the frequency due to the air-bearing stiffness, the relations of the natural frequencies with the air-bearing stiffness are found. It is found that the frequency response curve is fluctuant with the air-bearing stiffness in each direction. Finally, it is conclusion that the natural frequency of the PLSLM is largely affected by the air-bearing stiffness variety. This research is contributed to the dynamic characteristics resulted from the air-beating stiffness. Further work will include better optimization on the dynamic parameter in the controller design through the control algorithm for the precise long stroke motor.
文摘Axial flux hysteresis motor (AFHM) is self-starting synchronous motor that uses the hysteresis characteristics of magnetic materials. It is known that the magnetic characteristics of hysteresis motor could be easily affected by air gap and structure dimensions variation. Air gap length plays an important role in flux distribution in hysteresis ring and influences the output torque, terminal current, efficiency and even optimal value of other structural parameters of AFHM. Regarding this issue, in this study effect of air gap variation on performance characteristics of an axial flux hysteresis motor and effect of air gap length on hysteresis ring thickness and stator winding turns is investigated. Effect of air gap length on electrical circuit model is perused. Finally, simulation of AFHM in order to extract the output values of motor and sensitivity analysis on air gap variation is done using 3D-Finite Element Model. Hysteresis loop in the shape of an inclined ellipse is adopted. This study can help designers in design approach of such motors.
文摘针对轴向永磁齿轮电动机(Axial Magnetic Gear Motor,AMGM)整体尺寸偏大导致的转矩密度偏低(≤70 kN·m/m^(3))等缺陷,提出了一种双调制式轴向永磁齿轮电动机(Dual-modulation Axial Magnetic Gear Motor,DAMGM)。采用高速侧及低速侧两个调磁环对DAMGM低速转子进行调制,且两个调磁环中的非导磁部分均为永磁体,有效提高了低速转子的输出转矩;另外,与现有AMGM相比,将驱动电动机置于DAMGM高速永磁转子内部,减小了整体轴向尺寸,大幅提高了低速转子的转矩密度(150 kN·m/m^(3))。针对现有3D有限元计算时间长、计算机资源浪费严重等问题,给出一种基于圆柱坐标系的DAMGM三维分析方法。根据调磁环的3种边界条件,建立了调制后DAMGM气隙磁场及电磁转矩的数理模型,不仅计算结果准确(与3D有限元相比,平均计算误差≤5%),而且计算时间短(仅为3D有限元的1/10),便于DAMGM不同参数结构的分析、比较与优化。