This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)f...This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.展开更多
The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years th...The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.展开更多
The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of estab...The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of establishing SESAR and the main parts of the project:the research and development(R&D)part,which is led by the SESAR Joint Undertaking;the deployment part,which is managed by the SESAR Deployment Manager;and the European ATM Master Plan,which collects and lays out both the R&D and deployment needs.The latest European ATM Master Plan was adopted just prior to the current pandemic.The huge loss in air traffic due to the pandemic,and the speed of the recovery of the aviation industry will require reprioritization,but the main elements that have been established-particularly those in support of the environment-remain valid.展开更多
The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents severa...The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.展开更多
There is a growing in number of operations in aviation all over the world.This growing is increasing the necessity of innovation and new technology to respond the increment of the demand.As a respond of this demand,FA...There is a growing in number of operations in aviation all over the world.This growing is increasing the necessity of innovation and new technology to respond the increment of the demand.As a respond of this demand,FAA(Federal Aviation Administration)is working with NextGen in the United States and the EUROCONTROL is implementing the Point Merge as solution in the air traffic flow management in Europe.However,the FAA alternative and EUROCONTROL alternative are not mutually exclusive since Panama,a small country in Latin America,is trying to use a combination between the vectoring approach and the Point Merge in the air traffic flow management.In addition,the AAC(Autoridad de Aereonautica Civil)and the Tocumen(Tocumen International Airport)are working in a continuous collaboration between FAA and Panama with the mutual challenge to improve the actual system.As a result,the main airline of Panama,the Compania Panamena de Aviacion(COPA Airlines),and the Autoridad de Aeronautica Civil(AAC)constructed a simulation model to select an air traffic flow alternative that can be able to change the actual situation.In other words,COPA Airlines and AAC are pursuing the minimization of the numbers of conflicts,the number of sequence actions,the flight time,the track flight distance and the fuel burn.Furthermore,this study aims to use the final draft of this previous analysis based on a simulation methodology to conduct a Design and Analysis of Computer Experiments with the final objective to increment the statistical significance of the actual model.展开更多
With the development of the social economy,the traditional transportation mode will be replaced by the new mode which emphasizes the integration and cooperation between the transportation modes.The advent of automobil...With the development of the social economy,the traditional transportation mode will be replaced by the new mode which emphasizes the integration and cooperation between the transportation modes.The advent of automobilization in China has further intensified the pressure of the road traffic.The traffic jam alarm caused by the traffic accidents is increasing year by year.The minor accidents that can be dealt with quickly account for more than 70%of the traffic accidents.Traditionally,when dealing with the minor accidents,car owners often choose to stay on the spot and wait for the traffic police to deal with them.It is easy to cause"minor accidents and big traffic jams",which lead to the congestion of a road,a bridge and even a block.展开更多
Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the opera...Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.展开更多
A combined arrival and departure scheduling problem is investigated for multi-airport system to alleviate the problem of airspace congestion and flight delay.Firstly,the combined scheduling problem for multi-airport s...A combined arrival and departure scheduling problem is investigated for multi-airport system to alleviate the problem of airspace congestion and flight delay.Firstly,the combined scheduling problem for multi-airport system is defined through in-depth analysis of the characteristics of arrival and departure operations.Then,several constraints are taken into account,such as wake vortex separation,transfer separation,release separation,and separation in different runway operational modes.Furthermore,the scheduling model is constructed and simulated annealing algorithm is proposed by minimizing the total delay.Finally,Shanghai multi-airport system is chosen to conduct the simulation and validation.And the simulation results indicate that the proposed method is able to effectively improve the efficiency of arrival and departure operations for multi-airport system.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
Air traffic is exhibiting the characteristics of high density,high volume,and unmanned operations.To ensure smooth,efficient,safe,and reliable operations,it is necessary to promote the digital transformation of Air Tr...Air traffic is exhibiting the characteristics of high density,high volume,and unmanned operations.To ensure smooth,efficient,safe,and reliable operations,it is necessary to promote the digital transformation of Air Traffic Management(ATM)with digitalization,autonomy,and collaboration as its typical features.This article,based on the background of current and foreseeable future ATM needs,deeply analyzes the challenges and opportunities faced by traditional ATM.It explores and proposes to further investigate the commonalities,characteristics,and evolution of air traffic,the interaction mechanism of"human-machine-environment"in air traffic,the integrated design of airborne avionics and ATM systems,the comprehensive integration of ATM based on vulnerability analysis,airspace classification management,air traffic flow management,key technologies of"perception-collision avoidance",wake vortex monitoring and interval reduction,unmanned aerial vehicle management,and the expansion of ATM capabilities in the"high frontier".The research suggests strengthening top-level planning,building an open,mutually beneficial,and win-win digital ATM ecological framework based on multi-party collaboration,coordinating the research and application of new digital ATM technologies,accelerating the occupation of the new track of low-altitude economy,and enhancing ATM capabilities driven by the digital transformation of ATM.展开更多
The Global Air Navigation Plan is a flexible global engineering approach that allows all States to advance their Air Navigation capacities based on their specific operational requirements.Aviation professionals have a...The Global Air Navigation Plan is a flexible global engineering approach that allows all States to advance their Air Navigation capacities based on their specific operational requirements.Aviation professionals have an essential role in the transition to,and successful implementation of the GANP.The research work is focused on the creation of methodology for the partial automation of the comparison competences of Air Traffic Management(ATM)personal and synthesis of training courses and modules,using a formal,ontology-based approach as a tool to solve these problems.One of the problems in the implementation of the GANP is that,on the one hand,there are currently no unified requirements for all categories of ATM personnel,and on the other hand,the development of ATM technologies is far ahead of the pace of training of personnel of appropriate qualifications.This problem becomes even more noticeable in countries that have just started an active modernization of ATC systems and do not have enough experience in this field.The paper describes the general methodological approach based on the education ontology modelling for human competency gap analysis in ATM and for gap analysis between the university curricula outcomes and the ATM requirements.The ontology of key personnel competencies issues for the design and integration of large-scale future ATM programmes is proposed.展开更多
The article discusses several hemispheres of human resource management based on a typical case review. The study presents the main problems of the case from both employees and organizations; the issued problems involv...The article discusses several hemispheres of human resource management based on a typical case review. The study presents the main problems of the case from both employees and organizations; the issued problems involve compensations and benefits,restructuring,job design,and training. Based on the analysis of the case,two alternative solutions state that the potential routes for the organizations to avoid serious negative results. The study introduces a number of recommendations that can be used as a reference for other organizations to avoid similar risks.展开更多
This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is a...This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model. The model is demonstrated by using a realistic air urban scale SO 2 control problem in the Yuxi City of China. To evaluate effectiveness of the model, results of the approach are shown to compare with those of the linear deterministic procedures. This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents' health. Finally, a discussion of the areas for further research are briefly delineated.展开更多
It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration o...It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.展开更多
In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of ...In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.展开更多
This paper presents a short contribution in air transportation, specifically in scheduling aircraft (plane) landings at Léopol Sédar Senghor (LSS) airport of Dakar. The safety of air navigation of LSS is man...This paper presents a short contribution in air transportation, specifically in scheduling aircraft (plane) landings at Léopol Sédar Senghor (LSS) airport of Dakar. The safety of air navigation of LSS is managed by ASECNA: Agency for Air Navigation Safety in Africa and Madagascar. Scheduling aircraft landing is the problem of deciding a landing time on an appropriate runway for each aircraft in a given set of aircraft such that each aircraft lands within a predetermined time window. The separation criteria between the landing of an aircraft, and the landing of all successive aircraft, are respected. Our objective is to minimize the cost of deviation from the target times. We present a mixed-integer 0 - 1 formulation for the single runway case. Numerical experiments and comparisons based on real datasets of LSS airport are presented.展开更多
Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired fro...Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired from various sources.The understanding of their information seeking behaviors is still limited.We aim to identify controllers′ behavior through the examination of the correlations between controllers′eye movements and air traffic.Sixteen air traffic controllers were invited to participate real-time simulation experiments,during which the data of their eye ball movements and air traffic were recorded.Tweny-three air traffic complexity metrics and six eye movements metrics were calculated to examine their relationships.Two correlational methods,Pearson′s correlation and Spearman′s correlation,were tested between every eye-traffic pair of metrics.The results indicate that controllers′two kinds of information-seeking behaviors can be identified from their eye movements:Targets tracking,and confliction recognition.The study on controllers′ eye movements may contribute to the understanding of information-seeking mechanisms leading to the development of more intelligent automations in the future.展开更多
The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this ca...The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.展开更多
Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexi...Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexity.A scientific and rational sectorization of TMA can optimize airspace resources,and sufficiently utilize the control of human resources to ensure the safety of TMA.The functional sectorization model was established based on the route structure of arriving and departing aircraft as well as controlling requirements.Based on principles of sectorization and topological relations within a network,the arrival and departure sectorization model was established,using tree based ant colony algorithm(ACO)searching.Shanghai TMA was taken as an example to be sectorizaed,and the result showed that this model was superior to traditional ones when arrival and departure routes were separated at dense airport terminal airspace.展开更多
文摘This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.
文摘The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.
文摘The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of establishing SESAR and the main parts of the project:the research and development(R&D)part,which is led by the SESAR Joint Undertaking;the deployment part,which is managed by the SESAR Deployment Manager;and the European ATM Master Plan,which collects and lays out both the R&D and deployment needs.The latest European ATM Master Plan was adopted just prior to the current pandemic.The huge loss in air traffic due to the pandemic,and the speed of the recovery of the aviation industry will require reprioritization,but the main elements that have been established-particularly those in support of the environment-remain valid.
文摘The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.
文摘There is a growing in number of operations in aviation all over the world.This growing is increasing the necessity of innovation and new technology to respond the increment of the demand.As a respond of this demand,FAA(Federal Aviation Administration)is working with NextGen in the United States and the EUROCONTROL is implementing the Point Merge as solution in the air traffic flow management in Europe.However,the FAA alternative and EUROCONTROL alternative are not mutually exclusive since Panama,a small country in Latin America,is trying to use a combination between the vectoring approach and the Point Merge in the air traffic flow management.In addition,the AAC(Autoridad de Aereonautica Civil)and the Tocumen(Tocumen International Airport)are working in a continuous collaboration between FAA and Panama with the mutual challenge to improve the actual system.As a result,the main airline of Panama,the Compania Panamena de Aviacion(COPA Airlines),and the Autoridad de Aeronautica Civil(AAC)constructed a simulation model to select an air traffic flow alternative that can be able to change the actual situation.In other words,COPA Airlines and AAC are pursuing the minimization of the numbers of conflicts,the number of sequence actions,the flight time,the track flight distance and the fuel burn.Furthermore,this study aims to use the final draft of this previous analysis based on a simulation methodology to conduct a Design and Analysis of Computer Experiments with the final objective to increment the statistical significance of the actual model.
文摘With the development of the social economy,the traditional transportation mode will be replaced by the new mode which emphasizes the integration and cooperation between the transportation modes.The advent of automobilization in China has further intensified the pressure of the road traffic.The traffic jam alarm caused by the traffic accidents is increasing year by year.The minor accidents that can be dealt with quickly account for more than 70%of the traffic accidents.Traditionally,when dealing with the minor accidents,car owners often choose to stay on the spot and wait for the traffic police to deal with them.It is easy to cause"minor accidents and big traffic jams",which lead to the congestion of a road,a bridge and even a block.
基金supported by the National Natural Science Foundation of China (Nos.U1833103, 71801215, U1933103)the Fundamental Research Funds for the Central Universities (No.3122019129)。
文摘Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.
基金supported by the National Natural Science Foundation of China(No.71401072)the National Natural Science Foundation of Jiangsu Province(No.BK20130814)the Foundation of Jiangsu Innovation Program for Graduate Education(the Fundamental Research Funds for the Central Universities,No.SJLX15_0128)
文摘A combined arrival and departure scheduling problem is investigated for multi-airport system to alleviate the problem of airspace congestion and flight delay.Firstly,the combined scheduling problem for multi-airport system is defined through in-depth analysis of the characteristics of arrival and departure operations.Then,several constraints are taken into account,such as wake vortex separation,transfer separation,release separation,and separation in different runway operational modes.Furthermore,the scheduling model is constructed and simulated annealing algorithm is proposed by minimizing the total delay.Finally,Shanghai multi-airport system is chosen to conduct the simulation and validation.And the simulation results indicate that the proposed method is able to effectively improve the efficiency of arrival and departure operations for multi-airport system.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.
基金supported by the National Key R&D Program of China(No.2022YFB4300900).
文摘Air traffic is exhibiting the characteristics of high density,high volume,and unmanned operations.To ensure smooth,efficient,safe,and reliable operations,it is necessary to promote the digital transformation of Air Traffic Management(ATM)with digitalization,autonomy,and collaboration as its typical features.This article,based on the background of current and foreseeable future ATM needs,deeply analyzes the challenges and opportunities faced by traditional ATM.It explores and proposes to further investigate the commonalities,characteristics,and evolution of air traffic,the interaction mechanism of"human-machine-environment"in air traffic,the integrated design of airborne avionics and ATM systems,the comprehensive integration of ATM based on vulnerability analysis,airspace classification management,air traffic flow management,key technologies of"perception-collision avoidance",wake vortex monitoring and interval reduction,unmanned aerial vehicle management,and the expansion of ATM capabilities in the"high frontier".The research suggests strengthening top-level planning,building an open,mutually beneficial,and win-win digital ATM ecological framework based on multi-party collaboration,coordinating the research and application of new digital ATM technologies,accelerating the occupation of the new track of low-altitude economy,and enhancing ATM capabilities driven by the digital transformation of ATM.
基金The research is a part of the project“Latvian State Fellowships for Research2017/2018”Supported by The Latvian State Education Development Agency.
文摘The Global Air Navigation Plan is a flexible global engineering approach that allows all States to advance their Air Navigation capacities based on their specific operational requirements.Aviation professionals have an essential role in the transition to,and successful implementation of the GANP.The research work is focused on the creation of methodology for the partial automation of the comparison competences of Air Traffic Management(ATM)personal and synthesis of training courses and modules,using a formal,ontology-based approach as a tool to solve these problems.One of the problems in the implementation of the GANP is that,on the one hand,there are currently no unified requirements for all categories of ATM personnel,and on the other hand,the development of ATM technologies is far ahead of the pace of training of personnel of appropriate qualifications.This problem becomes even more noticeable in countries that have just started an active modernization of ATC systems and do not have enough experience in this field.The paper describes the general methodological approach based on the education ontology modelling for human competency gap analysis in ATM and for gap analysis between the university curricula outcomes and the ATM requirements.The ontology of key personnel competencies issues for the design and integration of large-scale future ATM programmes is proposed.
文摘The article discusses several hemispheres of human resource management based on a typical case review. The study presents the main problems of the case from both employees and organizations; the issued problems involve compensations and benefits,restructuring,job design,and training. Based on the analysis of the case,two alternative solutions state that the potential routes for the organizations to avoid serious negative results. The study introduces a number of recommendations that can be used as a reference for other organizations to avoid similar risks.
文摘This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model. The model is demonstrated by using a realistic air urban scale SO 2 control problem in the Yuxi City of China. To evaluate effectiveness of the model, results of the approach are shown to compare with those of the linear deterministic procedures. This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents' health. Finally, a discussion of the areas for further research are briefly delineated.
基金supported by the National Natural Science Foundation of China (No. 61573181)the Civil Aviation Joint Fund Key Projects of National Natural Science Foundation of China (No.U1333202)
文摘It is an important issue to assess traffic situation complexity for air traffic management.There is a lack of systematic review of the existing air traffic complexity assessment methods,and there is no consideration of the role of airspace and traffic coordination mechanism.A new 3-D airspace complexity measurement method is proposed based on route structure constraints to evaluate the air traffic complexity objectively.Firstly,the model of the impact on horizontal and vertical direction for“aircraft pair”is established based on the route guidance.After that,the coupled complexity model for 3-D airspace is given according to the modification on the model in terms of flight standardization.Finally,the global model of the airspace traffic complexity is established.It is proved by the experimental data from the actual operation in airspace that the proposed model can reflect the space coupling situation and complexity of aircraft.At the same time,it can precisely describe the actual operation of civil aviation in China.
基金supported by Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20200717).
文摘In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.
文摘This paper presents a short contribution in air transportation, specifically in scheduling aircraft (plane) landings at Léopol Sédar Senghor (LSS) airport of Dakar. The safety of air navigation of LSS is managed by ASECNA: Agency for Air Navigation Safety in Africa and Madagascar. Scheduling aircraft landing is the problem of deciding a landing time on an appropriate runway for each aircraft in a given set of aircraft such that each aircraft lands within a predetermined time window. The separation criteria between the landing of an aircraft, and the landing of all successive aircraft, are respected. Our objective is to minimize the cost of deviation from the target times. We present a mixed-integer 0 - 1 formulation for the single runway case. Numerical experiments and comparisons based on real datasets of LSS airport are presented.
基金supported by the National Natural Science Foundation of China (No.61304190)the Fundamental Research Funds for the Central Universities (No.NJ20150030)the Natural Science Foundation of Jiangsu Province of China (No.BK20130818)
文摘Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired from various sources.The understanding of their information seeking behaviors is still limited.We aim to identify controllers′ behavior through the examination of the correlations between controllers′eye movements and air traffic.Sixteen air traffic controllers were invited to participate real-time simulation experiments,during which the data of their eye ball movements and air traffic were recorded.Tweny-three air traffic complexity metrics and six eye movements metrics were calculated to examine their relationships.Two correlational methods,Pearson′s correlation and Spearman′s correlation,were tested between every eye-traffic pair of metrics.The results indicate that controllers′two kinds of information-seeking behaviors can be identified from their eye movements:Targets tracking,and confliction recognition.The study on controllers′ eye movements may contribute to the understanding of information-seeking mechanisms leading to the development of more intelligent automations in the future.
文摘The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.
基金supported by the National Natural Science Foundation of China(Nos.U1233101,71271113)the Fundamental Research Funds for the Central Universities(No.NS2016062)
文摘Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexity.A scientific and rational sectorization of TMA can optimize airspace resources,and sufficiently utilize the control of human resources to ensure the safety of TMA.The functional sectorization model was established based on the route structure of arriving and departing aircraft as well as controlling requirements.Based on principles of sectorization and topological relations within a network,the arrival and departure sectorization model was established,using tree based ant colony algorithm(ACO)searching.Shanghai TMA was taken as an example to be sectorizaed,and the result showed that this model was superior to traditional ones when arrival and departure routes were separated at dense airport terminal airspace.