The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and opera...Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.展开更多
Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts i...Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts in U.S.office buildings of multiple alternative ventilation strategies that combined:economizing,demand controlled ventilation(DCV),supply air temperature reset(SR),and/or a doubled ventilation rate.We used energy simulations in a Monte Carlo analysis,sampling 17 building inputs and varying locations to match the climate zone distribution of the U.S.office stock.Results indicated the possibility for significant savings compared to a baseline that ventilated constantly at a minimum rate in both a small office type with a constant air volume(CAV) HVAC system and a medium office type with a variable air volume(VAV) system.In 95%of instances,HVAC source energy savings were 5-25%in the small-CAV office(median:11%) and 6-42%in the medium-VAV office(median:27%).In the small-CAV office,DCV typically saved the most energy,usually from heating,and heating degree days and occupant density were decisive influences.In the medium-VAV office,economizing and SR were most important,DCV usually only had minor impacts,and zone temperature setpoints,along with climate indicators,were the critical influences.Other than infiltration,envelope characteristics did not strongly influence energy impacts.The untapped primary energy savings of alternative ventilation strategies over the 74%of U.S.office floorspace reasonably represented by our modeling was estimated at 36 TWh per year,with an annual value of U.S.$ 1.25 billion.展开更多
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
文摘Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.
文摘Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts in U.S.office buildings of multiple alternative ventilation strategies that combined:economizing,demand controlled ventilation(DCV),supply air temperature reset(SR),and/or a doubled ventilation rate.We used energy simulations in a Monte Carlo analysis,sampling 17 building inputs and varying locations to match the climate zone distribution of the U.S.office stock.Results indicated the possibility for significant savings compared to a baseline that ventilated constantly at a minimum rate in both a small office type with a constant air volume(CAV) HVAC system and a medium office type with a variable air volume(VAV) system.In 95%of instances,HVAC source energy savings were 5-25%in the small-CAV office(median:11%) and 6-42%in the medium-VAV office(median:27%).In the small-CAV office,DCV typically saved the most energy,usually from heating,and heating degree days and occupant density were decisive influences.In the medium-VAV office,economizing and SR were most important,DCV usually only had minor impacts,and zone temperature setpoints,along with climate indicators,were the critical influences.Other than infiltration,envelope characteristics did not strongly influence energy impacts.The untapped primary energy savings of alternative ventilation strategies over the 74%of U.S.office floorspace reasonably represented by our modeling was estimated at 36 TWh per year,with an annual value of U.S.$ 1.25 billion.